Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фишера процесс окисления углеводородо

    В методе Ф. Фишера для гидрирования окиси углерода используют катализаторы, которые состоят из элементов группы железа в соединении со щелочами и другими окислами. При работе под давлением образуются смеси, состоящие преимущественно из кислородсодержапщх производных углеводородов (синтол процесс), при работе без избыточного давления образуются углеводороды синтетический бензин Фишера и Тропша). Исходная окись углерода должна быть тщательно очищена, особенно от сернистых соединений, так как катализатор легко отравляется. Наряду с бензином в небольпшх количествах получаются газойль и парафин, которые используют как таковые или путем крекинга превращают в бензин. Окисление полученных этим методом высокоплавких парафинов дает жирные кислоты, которые позволяют производить синтетическое мыло. [c.470]


    В настоящее время возродился интерес к процессу Фишера-Троп-ша (синтез углеводородов из оксида углерода и водорода), направленному на получение фракций, выкипающих в пределах дизельного топлива. Достоинством этого процесса является возможность производства топлива, практически не содержащего серы. По указанной технологии сооружен ряд промышленных установок [353-357]. В частности, фирмой Шелл в Малайзии пущен завод по синтезу углеводородов из природного газа мощностью 570 тыс. т/год. Разработанный этой фирмой процесс получил название Синтез средних дистиллятов . Он включает стадии некаталитического парциального окисления метана с получением синтез-газа, последующий синтез высокомолекулярных парафинов и их гидрокрекинг с получением смеси средних дистиллятов. [c.364]

    До сего времени альдегиды и кислоты С3 и н-пропанол вырабатывали в промышленности только методом окисления бутан-пропана (сжиженных нефтяных газов). В будущем для этого, разумеется, можно пспользовать процесс Фишера-Тропша синтеза углеводородов. Однако в обоих случаях выход соединений С3 ограничен, так как они являются побочными продуктами и получаются с низким выходом. к-Масляный альдегид и -бутанол вырабатывают не только в процессе окисления, но и (в крупном масштабе) из этанола через ацетальдегид. По-видимому, бутилпроизводные оксосинтеза могут конкурировать с продуктами, получаемыми конденсацией ацетальдегида во всяком случае две крупные фирмы применяют оксосинтез. [c.278]

    Имеются данные [1, 6, 14—18] о промышленной и опытно-промышленной реализации в КС следующих процессов окислительного аммонолиза пропилена, гидрокрекинга нефтяного сырья, полимеризации, окисления нафталина до фталевого ангидрида, синтеза Фишера — Тропша, окисления бутилена до малеинового ангидрида и о-ксилола до изофталонитрила, получение синильной кислоты из метана и аммиака, десульфирования масел, углей и асфальтенов, получения дихлорэтана окислительным хлорированием этилена, хлорирования предельных и непредельных углеводородов, окислительного дегидрирования углеводородов, паровой и парокислородной конверсии природного газа и конверсии оксида углерода с водяным паром, синтеза аммиака. [c.271]

    Вода является эффективным разделяющим агентом при экстрактивной ректификации продуктов синтеза, полученных по методу Фишера — Тропша и пригодна для разделения продуктов неполного окисления углеводородов хотя в этом процессе для некоторых разделений выгодно применять азеотропную ректификацию с использованием в качестве разделяющего агента воды или чистого углеводорода. Дегидратация спиртов часто выполняется с помощью азеотропной ректификации, причем в качестве разделяющего агента применяются либо ароматические, либо парафиновые, либо хлорзамещенные углеводороды  [c.369]


    Процессы в кипящем слое используются в промышленности, как и в генераторе Винклера, для обжига пылевидной извести и серного колчедана, синтеза по Фишеру—Тропшу, для частичного окисления углеводородов, но главным образом для каталитического расщепления. При каталитическом крекинге катализатор быстро теряет активность вследствие отложения на его поверхности кокса. Пользуясь методом кипящего слоя, можно непрерывно регенерировать катализатор путем обжига. Для этого катализатор пневматически подается из реакционной камеры в регенератор, а затем вновь возвращается в реактор. Крекинг является эндотермическим процессом, при регенерации катализатора путем окисления выделяется тепло. Это тепло может быть, хотя бы частично, использовано для подогрева катализатора кроме того, может быть использовано тепло газов, выходящих из камеры регенерации. Процесс осуществляется в больших реакционных аппаратах, соединенных с регенератором, котлом-утилизатором и электрофильтром. [c.146]

    Парафины иного происхождения (например, из углей или получаемые в различных процессах по реакции Фишера — Тропша) могут содержать 15—20% углеводородов изостроения, а неочищенные парафинистые фракции (гач, петролатум) с пониженной точкой плавления — также циклические углеводороды. Состав жидких фракций (керосин, газойль) зависит от природы исходной нефти и процессов ее переработки. Содержание масла в твердых парафинах — важный критерий выбора сырья для окисления. [c.148]

    Когда будут введены в строй новые разделительные заводы на Ближнем Востоке, СНГ можно будет использовать вместо дистиллята при производстве аммиака в этом районе, а также в Европе и Японии. Удельный расход природного газа составляет примерно 932 м т аммония. Следовательно, для обеспечения типового завода мощностью до 1000 т/сут аммония потребуется 238 тыс. т бутана в год. Синтетические газы для производства метанола, которые получаются по методу Фищера—Тропща или методу окисления спиртов, отличаются по своему составу от тех, которые используются для синтеза аммиака. При производстве метанола смесь, состоящая из 1 объема СО и 2 объемов Нг, проходит над поверхностью катализатора (активированной окиси цинка) при температуре 350 °С и давлении 25,33—35,46 МПа. Разработанные компаниями ИСИ и Лурги новые катализаторы позволили снизить рабочее давление до 5066—12 160 кПа. Процессы, происходящие как при высоком, так и при низком давлении, базируются на равновесии реакций и нуждаются в многократной рециркуляции непрореагировавщих газов. Наиболее употребительным сырьем для производства метанола являются дистиллят и природный газ, однако с ними могут конкурировать и СНГ, если их имеется достаточное количество и доступны цены. Синтетические углеводороды, получаемые по методу Фишера—Тропша из СНГ, можно использовать для получения парафинов с прямой цепью при экзотермической реакции и давлении около 1013 кПа, что дает возможность избежать применения железного и кобальтового катализаторов. Если соотношение СО и Нз увеличивается, то конечной стадией процесса являются олефины с преобладанием двойных связей. Для синтеза окисленных спиртов требуется газ с соотношением СО и Нг, равным 1 1. При давлении 10,13— 20,26 МПа в присутствии кобальтового катализатора этот газ конвертирует олефины в альдегиды К— H = H2 - 0 -Hг- R— —СНг—СНг—СНО. [c.244]

    ВОЙ и второй фракций. Октановое число бензина очень низкое (около 40), но обычно повышается с уменьшением температуры кипения фракции. Путем риформинга иТдобавления тетраэтилсвинца этот бензин можно превратить в моторный бензин удовлетворительных качеств, С другой стороны, дизельное топливо вследствие высокой парафинистости имеет высокое цетановое число, поэтому процесс очень подходит для выработки этого продукта. Найдено, что неочищенный парафин вполне пригоден для получения (путем окисления) синтетических жирных кислот и для последующего превращения их в мыло. Установлена также возможность превращения олефиновых углеводородов низкокипящих фракций путем полимеризации с хлористым алюминием в смазочные масла. На фиг. 61 изображена принципиальная схема процесса Фишера-Тропша для получения моторного топлива из угля через стадию каталитического превращения водяного газа. [c.709]

    Положительные результаты были получены Фишером при замене окиси тория на окись марганца и окись алюминия [13]. Детальные исследования подобного катализатора, имеющего состав Ni—МпО—AlgOj — кизельгур (100 20 100 100), провели Каржавин и Полякин [10,11]. Они показали, что основным фактором, влияющим на качество катализатора, является степень окисления марганца в осадке, которую необходимо регулировать в процессе приготовления контакта. На активность катализатора влияют также условия осаждения, порядок смешения растворов, тщательность отмывки от остатков осадителя и режим восстановления. В результате этих исследований был разработан метод получения высокоактивного контакта. Никелевый катализатор указанного выше состава, полученный осаждением поташем из растворов азотнокислых солей, промытый горячей водой и восстановленный при 450° С в течение 3 ч, осуществляет синтез с выходом жидких углеводородов до 140—180 мл/м при соотношении СО На = 1 2 и температурах 175—205° С. Однако контакты на основе никеля не нашли промышленного применения, так как они быстро выходят из строя при давлениях синтеза выше атмосферного из-за образования летучего карбонила никеля. [c.131]


    Нанесенные металлические катализаторы широко прш 1еняются в химической, нефтеперерабатывающей и нефтехимической промышленности [1]. Достаточно перечислить важнейшие процессы, в которых они используются, и их огромное практическое значение станет очевидным синтез аммиака конверсия углеводородов с водяным паром в синтез-газ риформинг гидрокрекинг гидроочистка гидро-деалкилирование дегидроциклизация изомеризация парафинов и цикланов гидроизомеризация олефинов, диенов и ароматических углеводородов изомеризация этилбензола в ксилолы восстановление разнообразных органических соединений окисление синтез Фишера—Тропша и др. Исследование металлсодержащих контактов представляет большой интерес для теории катализа, создания новых полифункциональных каталитических систем и разработки новых каталитических процессов. Свойства таких катализаторов, как известно, существенно зависят от состояния и дисперсности металлического компонента [2—6]. И не случайно, когда были синтезированы и стали доступны кристаллические алюмосиликаты (цеолиты), их способность к ионному обмену и иысикая обменная емкость, наличие кристаллической структуры с однородными порами молекулярных размеров были использованы для получения катализаторов-, содержащих высокодиспергированные металлы, обладающие молекулярно-ситовой селективностью и полифункциональным действием. Уже первые исследования, выполненные Рабо и др. [7, 8], Вейсцем и др. [9, 10], показали большую перспективность металлцеолитных систем для катализа, нефтепереработки, нефтехимии. Интерес к этим системам особенно возрос после опубликования результатов изучения внедрения атомов платины в цеолитную структуру, ее дисперсности и установления высокой стойкости к отравлению серой ионообменного катализатора 0,5% Р1-СаУ [И]. [c.154]

    Единственным промышленным процессом получения синтез-газа, основанным на парциальном окислении метана кислородом, является процесс, реализуемый на заводе по получению ДТ фирмы Шелл в Малайзии. Схема процесса приведена на рис. 7.77. Это некаталитический гомогенный процесс. Реакция протекает при температуре 1100-1300 °С до достижения термодинамического равновесия. После очистки от НгЗ и СО2 синтез-газ состава Н2 СО = 2 1 поступает на синтез углеводородов по методу Фишера — Тропша, который протекает вплоть до образования высокомолекулярных воскообразных углеводородов. Затем на цеолитных катали- [c.592]

    Книга, написанная выдающимся химиком-металлооргаником Э. Фишером и его учеником Г. Вернером, представляет собой подробный обзор методов получения, свойств и строения комплексных соединений переходных металлов с диенами и полиенами. Металлоорганические я-комплексы играют первостепенную роль как катализаторы или промежуточные продукты в промышленно важных процессах (полимеризация олефинов и диенов по Циглеру — Натта, ок-сосинтез, окисление непредельньтх углеводородов и др.). [c.240]

    Обнаруженные на ранних стадиях исследования примеры отравления относятся главным образом к активности платины в реакции окисления п сходных реакциях (превращение двуокиси серы в трехокись, реакция образования воды из гремучего газа, разложение перекиси водорода), но основное применение эта группа металлов находит, пожалуй, в реакциях гидрирования. Действительно, большинство из современных работ по отравлению было проведено в связи с эти.м типом реакци11. Металлы вертикальной группы никель, палладий и платина, особенно важны благодаря их высокой общей активности и вследствие широкого применения их как для гидрирования, так и для дегидрирования. Меньшая активность кобальта и особенно меди сообщает этим элементам особые свойства, которые иногда полезны. Так, наиболее мягкое действие меди как катализатора гидрирования часто допускает выделение промежуточных продуктов, а применение меди вместо никеля для дегидрирования при высоких температурах обычно приводит к меньшему образованию продуктов разложения далее, кобальт (подобно никелю и, в меньшей степени, железу) является эффективным катализатором в специальном случае синтеза жидких углеводородов путем конденсационной гидрогенизации окиси углерода по методу Фишера—Тропша. Основное использование железо находит, однако, в синтезе аммиака, представляющем реакцию, близкую к гидрированию. Все эти процессы очень чувствительны к отравлению. Серебро и золото имеют незначительную активность для обычного гидрирования и поэтому в табл. 1 поставлены в скобки однако они использовались как эффективные катализаторы в особом случае восстановления нитробензола водородом до анилина [1], при окислительном дегидрировании метилового спирта до формальдегида. Вместо серебра можно использовать медь. [c.101]

    Д-р Бриджер показал, что в случае, если скорость реакции лимитируется процессами диффузии в порах катализатора, положение может значительно облегчиться (статья 68). Я мог бы добавить, что это можно сделать различными путями, и привести некоторые примеры. При. исследовании синтеза Фишера— Тропша с восстановленным железным катализатором синтеза аммиака было замечено, что частицы катализатора полностью заполняются углеводородами, являющимися жидкими при температуре синтеза, и процесс сильно лимитируется диффузией реагирующих веществ через это масло. В качестве первого приближения можно считать, что при реакции синтеза эффективно используется лишь часть массы катализатора, примерно на глубину 0,1 мм от внещней поверхности зерна. Очевидно, что превращение синтез-газа можно эффективно проводить, если толщина слоя катализатора составляет около 0,1 мм, а также что концентрация продуктов реакции, водяных паров и углекислого газа возрастает до максимального значения именно на этом расстоянии. Таким образом, в толще катализатора создаются идеальные условия для окисления железа, и окисляющее действие катализатора локализуется преимущественно во внутренней части зерен. Эти фазовые превращения приводят к потере механической прочности катализатора и порождают разнообразные трудности, связанные с измельчением катализатора. Исходя из этих фактов, Бенсон и Шульц пришли к выводу, что эффективный катализатор должен представлять собой слой активного материала толщиной примерно 0,1 мм, нанесенный на прочный инертный материал. Катализатор такого типа был приготовлен путем умеренного окисления стальных [c.783]

    Принцип энергетического соответствия позволяет классифицировать переходные металлы по каталитическим свойствам. Показанное на рис. 1,7 разбиение металлов на группы близко по смыслу к предложенному в работе [112]. В основе его лежит обсуждаемая в разделе 1.3 тенденция изменения теплот адсорбции и соотношения между диссоциативной и ассоциативной формами адсорбции малых молекул на различных металлах. Группу А составляют металлы, которые сильно хемосорбируют в диссоциативной форме органические молекулы, а также такие газы, как СО и N2, обладающие высокой энергией связи. Скорости десорбции молекул с этих металлов малы, вследствие чего они обычно являются плохими катализаторами. Металлы группы В способны диссоциативно адсорбировать СО и N2, Они являются катализаторами реакций Фишера — Тропша и спитеза аммиака, поскольку скорости десорбции продуктов реакции в интервале температур 400—800°С для них достаточно велики. Металлы группы С катализируют скелетные реакции углеводородов, а также гидрогенизациопные процессы. Медь обладает способностью гидрировать альдегиды, кетоны, органические кислоты и, в небольшой степени, олефины. Есть сведения о наличии слабой гидрирующей способности у золота. Серебро является катализатором эпоксидирования этилена и окисления метанола в формальдегид. Ни один из л етал. юв группы О не способен катализировать реакции, требуюш.ие разрыва свкзей С—С или более прочных связей. [c.26]

    Природные жирные кислоты жиров и масел являются обычным сырьем для получения высококачественных мыл. Однако рост их потребления вызывает необходимость разработки других видов сырья для получения моющих средств на базе нежирового сы1Й>я. В соответствии с этим получило значительное развитие производство синтетических алифатических карбоновых кислот, пригодных для изготовления мыла. Наиболее важным технологическим процессом их получения является прямое окисление алифатических углеводородов (обычно парафина) или углеводородов, полученных при синтезе Фишера — Тропша, которое приводит к образованию смеси окисленных соединений, содержащей спирты, кетоны и кислоты. Последние затем отделяются от неомыляемых веществ. Окисление обычно производится продуванием воздуха через жидкие углеводороды при температуре 100—180° в присутствии различных катализаторов, из которых особенно пригодны перманганат калия и другие соединения марганца. В ряде случаев хорошие результаты были получены [9а] и без применения катализатора. [c.34]

    Спирты, годные для сульфоэтерификации, могут быть получены в результате восстановления как природных жирных кислот, так и кислот, получающихся при окислении парафина или углеводородов в процессе Фишера — Тропша. Эти продукты [114] получили техническое значение в Германии, но в США они мало распространены. [c.65]

    При окислении парафина или углеводородов, образующихся в процессе Фишера — Тропша (предназначаемых для получения карбоновых кислот), в качестве побочных продуктов получается некоторое количество олефинов и спиртов, а также кетонов. Будучи выделены из смеси, эти спирты могут быть превращены посредством сульфоэтерификации в поверхностноактивные вещества [117]. [c.66]


Смотреть страницы где упоминается термин Фишера процесс окисления углеводородо: [c.285]    [c.13]    [c.13]    [c.27]    [c.240]    [c.342]    [c.18]    [c.308]    [c.52]    [c.18]    [c.308]   
Поверхностно-активные вещества (1953) -- [ c.65 , c.66 ]




ПОИСК





Смотрите так же термины и статьи:

Фишер



© 2025 chem21.info Реклама на сайте