Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рекомбинация свободных радикало

    Суммарные скорости цепных реакций обычно сильно снижаются в присутствии соединений, которые могут взаимодействовать с атомами и радикалами и превращать их в соединения, неспособные участвовать в стадиях развития цепи. Такие вещества часто называют ловушками радикалов или ингибиторами. Кислород действует как ингибитор при хлорировании метана, так как он быстро взаимодействует с метильным радикалом, образуя сравнительно устойчивый (менее реакционноспособный) радикал перекиси метила СНзОО-. Это приводит к эффективному обрыву цепи. В благоприятных условиях цепь хлорирования метана может пройти от 100 до 10 ООО циклов, прежде чем произойдет обрыв вследствие рекомбинации свободного радикала или атома. Эффективность (или квантовый выход) реакции, т. е. количества прореагировавших веществ относительно количества поглощенного света, является, таким образом, весьма высокой. [c.109]


    По тримолекулярному механизму протекают также реакции рекомбинации двух атомов и простейших свободных радикалов, а также некоторые реакции присоединения атомов по двойной связи, например, присоединение атома Н к Ог с образованием свободного радикала НОг- [c.98]

    Отрицательное взаимодействие цепей представляет собой рекомбинацию двух активных центров с насыщением свободных валентностей. Положительное взаимодействие цепей, иначе называемое квадратичным автокатализом, заключается, по предположению И. Н. Семенова, в образовании при взаимодействии двух мало активных свободных радикалов или двух активных промежуточных молекулярных продуктов одного или нескольких активных свободных радикалов. Например, при окислении Sj образуется мало активный свободный радикал SO можно представить себе следующее квадратичное разветвление  [c.56]

    Если одним из активных центров цепной реакции является свободный атом X, а другим — достаточно сложный свободный радикал К, то в некоторых случаях преобладающим процессом обрыва цепей может оказаться рекомбинация атома со свободным радикалом (так называемый перекрестный обрыв цепей). Пусть реакция продолжения цепи записывается в виде [c.309]

    Вулканизация может протекать также под действием свободнорадикальных инициаторов (например, пероксидов) или под действием излучений высокой энергии (например, 7-излучения). Механизм реакции заключается в отрыве подвижного атома, например атома водорода, от макромолекулы с образованием свободного радикала. Рекомбинация макрорадикалов в конечном счете приводит к образованию разветвленных и сшитых полимеров. [c.61]

    Обрыв цепи — группа реакций, приводящая к исчезновению активных частиц и способная вызвать прекращение цепного процесса. Обрыв может быть линейным, если скорость его пропорциональна концентрации активных промежуточных частиц в первой степени. К ним относятся взаимодействия активных промежуточных частиц с поверхностью (материалом стенки) сосуда с соединениями металлов разной степени окисления, способными отдать или отобрать один электрон с валентно-насыщенными молекулами (ингибиторами), следствием чего является образование малоактивного свободного радикала. Такой радикал не способен к продолжению цепей и погибает при рекомбинации с каким-либо другим радикалом. Примером обрыва цепей на молекулах ингибитора может служить окисление углеводородов в присутствии дифениламина  [c.382]


    Этот процесс кинетически является типичной неразветвленной цепной реакцией, поскольку идет с образованием свободного радикала, т. е. с его регенерацией. Каждый акт присоединения к растущему свободному радикалу новой молекулы мономера дает звено цепи. Длина цепи показывает, сколько молекул мономера вступило в процесс полимеризации в расчете на один начальный свободный радикал. Это — кинетическая длина цепи в отличие от длины цепи образующегося полимера (степени полимеризации). Если процесс полимеризации не осложнен дополнительными элементарными стадиями (например, стадиями передачи цепи), то степень полимеризации равна кинетической длине цепи v при обрыве цепи диспро-порционированием, и равна удвоенной кинетической длине цепи 2v при обрыве в результате рекомбинации. [c.386]

    Присоединение к двойной или тройной связи может происходить по четырем основным путям. Три из них представляют собой двустадийные процессы, в которых первая стадия — это атака нуклеофила, электрофила пли свободного радикала. Вторая стадия заключается в рекомбинации получающегося интермедиата соответственно с положительной, отрицательной или нейтральной частицей. В механизме четвертого типа атака на оба атома углерода двойной или тройной связи происходит одновременно. Реализация одного из этих четырех типов механизмов в каждом конкретном случае определяется природой субстрата и реагента и условиями реакции. Некоторые реакции, рассмотренные в данной главе, могут идти по механизмам всех четырех типов. [c.132]

    Обрыв цепи может происходить не только при воздействии свободного радикала с другим свободным радикалом в так называемом процессе рекомбинации радикалов. Очень часты взаимодействия свободного радикала с материалом стенки сосуда, где протекает реакция, что также приводит к обрыву цепи. [c.124]

    Первый член уравнения отражает обменные взаимодействия двух молекул, содержащих неспаренный электрон (знак — для параллельных и антипараллельных спинов), или свободных радикалов. В предельном случае этот член заставляет два свободных радикала рекомбинировать. Если какие-либо стерические затруднения препятствуют рекомбинации, а кинетическая энергия молекул невелика, то сила притяжения свободных радикалов ведет к их ассоциациям или сольватациям. [c.84]

    В качестве инициаторов этой реакции используют соединения, генерирующие свободные радикалы. Присоединение свободного радикала к молекуле ненасыщенного мономера дает новый свободный радикал, который в свою очередь присоединяется к следующей молекуле мономера, образуя еще более крупный свободный радикал, и т. д. Обрыв цепи происходит при рекомбинации или диспропорционировании двух радикалов. В процесс цепной радикальной полимеризации входят реакции инициирования (схемы 1, 2), роста цепи (схемы 3, 4) и обрыва цепи (схема 5). Для реакций цепной полимеризации обычно характерны следующие особенности, отличающие их от процессов ступенчатой полимеризации (а) рост цепи происходит путем быстрого присоединения молекул мономера к небольшому числу активных центров (б) скорость полимеризации очень быстро достигает максимального значения и затем остается более или менее постоянной до тех пор, пока не будет израсходован весь инициатор (в) концентрация мономера равномерно у-меньшается (г) даже при низкой степени конверсии мономера в продуктах реакции содержатся полимеры с высокой молекулярной массой. [c.301]

    Р. 3. Магарил [106], признавая цепной характер термических процессов, предполагает, что инициирование цепей достигается за счет взаимодействия ингибитора с молекулами исходных углеводородов. В этом случае допускается, ч.о обрыв цепи есть результат рекомбинации свободною радикала и молекул ингибитора. Неодинаковая длина цепей, образующихся в процессе термического крекинга при низких и высоких температурах, свидетельствует о разных механизмах протекания этого процесса. При высоких температурах (900 С и выше) в процессе крекинга (а также коксования) также образуются радикалы, но вследствие значительного сокращения числа звеньев в цепи цепная реакция вырождается и все больше приближается к молекулярной. [c.84]

    Железко Е.П., Печеный Б.Г, О кинетике образования и рекомбинации свободных радика-тов в битумах.-В кн. Труды СооздорНМ . -Балааиха, Мос.обл., 1970, вып.46, с.137-142, [c.26]

    Определяющими факторами второй стадии, основной в процессе получения меченых соединений, являются вероятность образования промежуточного комплекса и степень возбуждения молекулы или комплекса. В зависимости от степени замедления атома отдачи процесс образования соединения, содержащего радиоактивный атом, протекает по механизму упругих или неупругих соударений. В первом случае меченая молекула образуется в результате рекомбинации свободного радикала и атома отдачи, потерявшего всю (предельный случай) или значительную часть энергии в результате упругого столкновения с аналогичным стабильным атомом молекулы. Такое взаимодействие приводит к получению меченых молекул, являющихся продуктами замещения равноценных или близких по массе атомов на атомы отдачи. Во втором случае — случае неупругих соударений — атом отдачи воз--буждает молекулу в целом, что иногда приводит к образованию промежуточных комплексов с избыточной энергией. [c.58]


    Хотя образование продуктов типа Вюрца вследствие рекомбинации свободных радик 1Лов не исключается, в дальнейшем следует учесть существенный вклад реакций реактива Гриньяра со свободныыи радикалами. Исходя из представлений Пальма и Хырак такие реакции могут быть следующие  [c.338]

    Если допустить, что константы рекомбинации двух радикалов задаются как удвоенное среднее геометрическое констант рекомбинаций для каждого свободного радикала, что является вполне разумным допущением, тогда уравнение может быть сведено к линейному и решено точно. Это означает, что к 2= 2 [ 9 23 (М)] 1/2, А 10=2 ( 9 24)1/2 И т. д. Таким образом, уравнение (XIII.И.4) становится полным квадратом, корень квад- [c.316]

    Это уравнение предполагает, что свободный радикал ОН, диффундируя к стенке, может адсорбироваться ею и в конечном счете разрушаться в результате гетерогенной рекомбинации с другим свободным радикалом. Ускорение реакции в присутствии инертного газа, как полагают, связано с уменьшением скорости диффузии ОН к поверхности сосуда. Согласно диффузионной теории [22] предполагается, что способность стенки к обрыву цепи е, т. е. среднее число столкновений активного центра со стенкой до его разрушения значительно больше, чем отношение длины свободного пути к диаметру сосуда скорость реакции (V) в этом случае обратно пропорциональна давлению и квадрату дйаметра сосуда. Принимая скорость реакции (V) равной произведению средней концентрации ОН на коэффициент К , можно выразить зависимость скорости реакции ог давления п диаметра сосуда уравнением  [c.243]

    По теории Смита — Эварта принимаются следующие допущения а) обрыв двух свободных радикалов в полимер-мопомерной частице происходит мгновенно б) каждая активная частица в любой момент времени содержит только один свободный радикал, так как при проникновении второго радикала частица дезактивируется вследствие реакции рекомбинации в) средняя стационарная концентрация радикалов в частице составляет половину исходной концентрации г) диффузия мономера из капель эмульсии в полимер-мономерную частицу не лимитирует процесс поли меризацпи. [c.148]

    Обобщим этот пример. Пусть за счет внешнего источника энергии (свет, электроразряд, нагревание, а-, р- иЛи -излученне, электронный удар) образуются свободные радикалы или атомы, обладающие ненасыщенными валентностями. Они взаимодействуют с исходными молекулами, причем в каждом звене цепи вновь образуется новая активная частица. Путем попеременного повторения одних и тех же элементарных процессов происходит распространение реакционной цепи. Ее длина может быть очень большой (в рассматриваемом примере па каждый поглощенный квант образуется до 100 ООО молекул НС1). Столкновение двух одинаковых радикалов при условии, что выделяющаяся при этом энергия может быть отдана третьему телу, приводит к обрыву цепи. Причиной обрыва может служить не только рекомбинация свободных радикалов (XII), но и их захват стенкой реакционного сосуда, взаимодействие радикала с примесями (если они не служат источником свободных радикалов), а также образование малоактивного радикала (обрыв в объеме). Вот почему скорость цепной реакции очень чувствительна к наличию посторонних частиц и к форме сосуда. Так, содержание Б хлороводородной смеси долей процента кислорода в сотни раз уменьшает длину цепей, а поэтому и скорость синтеза гтом Н, легко реагируя с О2, образует малоактивный радикал НО2, не способный вступать в реакцию [c.127]

    Свободные радикалы могут оказаться устойчивыми также в результате того, что атом, обладающий неспаренным электроном, сильно экранирован какими-либо заместителями, входящими в состав свободного радикала. В результате этого такие свободные радикалы не могут сблизиться на расстояние, достаточное для образования между ними ковалентной связи, и их рекомбинация оказывается неосуществимой. Примером такого свободного радикала, существующего в виде стабильного химического вещества, является дж )енилпикрилгидразил [c.17]

    С1 или свободный радикал O I не исчезнут в результате захвата стенкой реакционного сосуда или процесса рекомбинации  [c.241]

    При этом у образовавшегося нового свободного радикала N( eH5)2 свободная валентность сохраняется. Однако вследствие сопряжения неспаренного электрона с двумя ароматическими кольцами свободная валентность в этом радикале делокализована. Поэтому свободный радикал N( eH5)2 малоактивен, он не может оторвать атомН ог молекулы углеводорода RH, т. е. не может продолжить цепь и погибает в результате рекомбинации с каким-либо другим свободным радикалом, например свободным радикалом R  [c.273]

    Активированная молекула может образовать с мономером димер, сохраняющий свою активную форму. Последний аналогичным образом превращается в тример и т. д. Таким путем цепь продолжается дальше и растет, пока не наступит обрыв, т. е. дезактивация конечной активной группы. Причинами обрыва цепи могут быть изомеризация в устойчивую форму, реакция между двумя растущими цепями, рекомбинация радикалов и т. д. Длина цепей может быть различной. Так, например, для случаев винильной полимеризации установлено, что каждый свободный радикал полимеризует до 550 молекул. [c.628]

    Таким образом, измеряя отношение скоростей накопления веществ С и Р при заданной концентрапии вещества А, можно найти отношение к Ук . Поскольку существует независимый метод определения абсолютнь значений констант скорости рекомбинации свободных радикалов (например, метод вращающегося сектора), то полученные относительные величины к ук для реакции какого-либо свободного радикала с рядом органических молекул дают возможгюсть найти абсолютные величины констанг скорости этих реакций. [c.211]

    Реакция рекомбинации состоит во взаимном насыщении двух макрорадикалов или макрорадикала и низкомо 1Ск лярното свободного радикала  [c.42]

    Вр-первшс, под действием лазерного излучения образуются свободные радикалы. Свободный радикал рекомбинируется. Поскольку свободный радикал имеет избыточную энергию прх рекомбинации, она проявляется в вцде свечения. Влага может поглощать это свечение и выход люминесценции падает. [c.94]

    Все описанные в литературе современные схемы такого нитроваиия (А. И. Титова, Мак-Клирли и Дегеринга, Бахмана с сотрудниками) совпадают в том, что оно представляет собой, по терминологии Титова, молекулярно-радикальный процесс. В этот термин Титов вкладывает представление о реакции, происходящей путем образования из исходных веществ свободных радикалов (К и N02) и последующей рекомбинацией последних. Процесс, являясь радикальным, не приводит к возникновению ценной реакции, поскольку рекомбинация алкильного радикала с двуокисью азота, как и всякая рекомбинация, не сопровождается появлением новых, свободных радикалов и, следовательно, представляет собой обрыв цепи. [c.302]

    Не следует думать, что оба эти направления реакции должны развиваться независимым образом,не влияя друг на друга. Свободные радикалы, ведущие, например, цепное окисление альдегидов, несомненно способны взаимодействовать и с исходным углеводородом, хотя, возмошно, и с меньшей эффек-тийностью. В результате такого взаимодействия естественно предположить образование алкильного радикала (RH -f А —> R -i-AH, где А —свободный радикал), который путем рекомбинации с двуокисью азота будет поддершивать чисто радикальное направление реакции. [c.311]

    В литературе достаточно широко распространено мнение о том, что с ароматичностью асфальтенов прямо связана концентрация в них ПМЦ. В основе этого лежит известное положение об асфальтенах как о поли-сопряженной системе. Наличие системы полисопряжения способствует стабилизации неспаренного электрона, что и приводит к появлению ПМЦ. Анализ наших данных не дает оснований для такого однозначного вывода. Действительно, для асфальтенов некоторых месторождений (Федоровское, Самотлорское) такая связь намечается. Однако рассмотрение совокупности месторождений показывает полное отсутствие этой связи. Вероятно, причина в особенностях строения асфальтенов нефтей. Разными авторами предложено множество различных моделей строения асфальтенов [13 . При их рассмотрении нетрудно убедиться, что при одной и той же степени ароматичности они должны существенно различаться по своим парамагнитным свойствам. При этом наибольшей концентрацией ПМЦ обладает структура, состоящая из системы полисопряженных блоков, изолированных друг от друга насыщенными структурами. В этом случае каждый такой блок, или участок в общей макромолекуле, будет представлять собой своеобразный "свободный радикал", а наличие между ними насыщенных фрагментов будет препятствовать передаче электрона, т.е. их "рекомбинации". [c.93]

    Б случас адсорбции следует ожидать, что промежуточно образовавшиеся радика. )ы должны быть стабилизированы, а это в соответствии с постулатом Хэммоида приведет к переходному состоянию реакции рекомбинации радикалов, сходному с про дуктом. Рекомбинация свободных радикалов протекает крайне экзотермично, а низкая энергия активации связана главным образом с энергией диффузии Рекомбинация адсорбированных радикалов должна иметь более высокую энергию активации, более выраженное переходное состояние и, следовательно, на нее должны влиять стерические факторы Рекомбинация свободных радикалов должна протекать случайным образом. Эти представления отражены на рис 14 2. Чувствительный тест на роль адсорбции состоит в измерении стереохимического выхода продуктов реакции сочетания при анодном окислении карбоксила-тов (-4) — (8), имеющих различнь с конформации [40, 65]. В по- [c.434]


Смотреть страницы где упоминается термин Рекомбинация свободных радикало: [c.228]    [c.22]    [c.210]    [c.267]    [c.244]    [c.19]    [c.275]    [c.318]    [c.416]    [c.1162]    [c.148]    [c.118]   
Курс теоретических основ органической химии издание 2 (1962) -- [ c.804 , c.807 , c.825 , c.830 , c.836 ]

Курс теоретических основ органической химии (1959) -- [ c.697 , c.699 , c.721 , c.726 ]




ПОИСК





Смотрите так же термины и статьи:

Катализ рекомбинации свободных радикалов

Превращения и рекомбинация свободных радикалов

РЕКОМБИНАЦИЯ И ДИСПРОПОРЦИОНИРОВАНИЕ СВОБОДНЫХ АТОМОВ И РАДИКАЛОВ 8 1, Рекомбинация атомов

Радикал рекомбинация

Радикалы свободные соединение рекомбинация

Распад молекул по связям и рекомбинация свободных радикалов

Рекомбинация

Рекомбинация перекисных свободных радикалов

Рекомбинация свободных атомов радикалов

Рекомбинация свободных радикалов при деструкции

Рекомбинация свободных радикалов при полимеризации

Свободные радикалы

Свободные радикалы ион-радикалы

Свободные радикалы рекомбинация



© 2024 chem21.info Реклама на сайте