Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фриделя-Крафтса алкилирование характер ароматический

    Для описания кинетики реакции алкилирования ароматических углеводородов различными алкилирующими агентами предлагалось пользоваться уравнениями кинетики, выведенными для гомогенной необратимой или обратимой на отдельных ступенях последовательной реакции [78—81]. Авторы не учитывали при этом сложного характера процесса, проявляющегося, в частности, при комплексообразовании реагента с катализаторами Фриделя — Крафтса — Густавсона. В работах [82—84] предложено применять уравнения первого порядка, дробного порядка — в работе [83], второго порядка —в работах [85—87], которые используются для описания простых гомогенных реакций. [c.102]


    Алкилирование и ацилирование ароматических соединений по Фриделю — Крафтсу — это типичные реакции электрофильного замещения в ароматическом ряду. В соответствии с рассмотренной выше ролью хлористого алюминия и других кислот Лыоиса (катализаторов Фриделя — Крафтса) как переносчиков, галогена функция этих вспомогательных веществ состоит в том, чтобы поляризовать реагент и усилить тем самым его характер как кислоты Льюиса (см. стр. 373). [c.441]

    Карбонильная группа препятствует реакции Фриделя—Крафтса, но с усилением ароматического характера соединения и с увеличением активности галоидированного компонента конденсация становится возможной. Особенно очевидно это при реакции ацилирования (см. стр. 340), однако при реакции алкилирования примеры, иллюстрирующие этот вывод, являются мало обычными. [c.186]

    Основные представления об алкилировании бензола. Реакция алкилирования ароматических соединений была открыта в 1877 г. Фриделем и Крафтсом, предложившими в качестве катализатора хлорид алюминия. С тех пор процессы алкилирования ароматических соединений получили большое промышленное значение. В качестве катализаторов используют много веществ кислотного характера — серную и фосфорную кислоту, фтористый водород, алюмосиликаты, иониты, хлориды алюминия, цинка, титана и др. Галогениды металлов обычно применяют в присутствии промоторов галогениды образуют с ними комплексы, являющиеся сильными протонными кислотами. В качестве алкилирующих агентов можно применять хлорпарафины и спирты, но наиболее предпочтительны олефины. [c.28]

    Наконец, становится ясным, что полное понимание механизма реакции Фриделя — Крафтса невозможно без детального представления о характере взаимодействия между различными компонентами типичной реакционной смеси. Такая смесь включает галоидный металл МХ , галоидо-водород НХ, галоидный алкил RX, ароматический углеводород АгН и один или несколько алкилированных продуктов ArR или ArRj. В настоящее время известно, что многие из этих индивидуальных компонентов реагируют между собой с образованием продуктов присоединения или комплексов, а получающиеся при этом продукты должны рассматриваться как важные составные части реакционной смеси. Поэтому следует рассмотреть данные, относящиеся к этим взаимодействиям, прежде чем перейти к детальному обсуждению механизма реакции Фриделя — Крафтса. [c.430]


    Безводный хлористый алюминий оказывает очень сильное действие на многие чистые ароматические соединения. Это действие особенно ярко выражено по отношению к ароматическим углеводородам. В настоящей главе описан ход реакций взаимодействия ароматических соединений с хлористым алюминием. К таким реакциям относятся дегидрогенизация, конденсация, миграция алкилов в боковых цепях, изомеризация, перегруппировка и простое расщепление. Поскольку некоторые реакции такого типа подробно описаны в самостоятельных главах, в данной главе разобран лишь общий характер и значение таких процессов. Здесь приведены примеры образования многоядерных углеводородов путем аз то-кондеысации ароматических углеводородов во время реакций алкилирования по Фриделю—Крафтсу, поскольку подобные реакции, повидимому, показывают склонность этих углеводородов к реакции конденсации при различных условиях. В настоящей главе разбираются также процессы отщепления замещающих групп от соединений неуглеводородного характера. [c.712]

    Продукты конденсации окиси этилена с алкилфенолами относятся к одним из наиболее известных и широко применяемых поверхностноактивных веществ. Различные алкилфенолы при конденсации с 6—20 и более молями окиси этилена дают эффективные поверхностноактивные вещества. Фенолы могут быть MOHO-, ди- и полиалкилированы, а общее число углеродных атомов алкильных боковых цепей может изменяться от 5 до 18 и более. В качестве ароматического ядра, несущего фенольный гидроксил, может быть использовано бензольное, нафталиновое или дифениловое кольцо. В число алкилфенолов, применяющихся в наибольших количествах, входит диамилфенол, п-трет-окгилфенол (синтезируется из диизобутилена) и нонилфенол (получается из трипропилена). Крезолы, как и фенолы, также способны алкилироваться, хотя конечные оксиэтилированные продукты из них [21] несколько отличаются по свойствам от веществ на основе фенолов. Алкилирование фенолов производится спиртами или непредельными углеводородами в присутствии катализаторов Фриделя—Крафтса, т. е. соединений сильнокислого характера или электроноакцепторных веществ наряду с алкилфенолами в этих случаях обычно получается некоторое количество 0-алкилированного вещества—алкил-фенилового эфира, а также образуются продукты полимеризации олефина, применяемого для алкилирования. Выход этих побочных продуктов зависит [c.95]


Смотреть страницы где упоминается термин Фриделя-Крафтса алкилирование характер ароматический: [c.301]   
Основы органической химии Часть 1 (2001) -- [ c.145 , c.146 , c.147 , c.148 ]




ПОИСК





Смотрите так же термины и статьи:

Алкилирование по Фриделю-Крафтсу

Фридель

Фриделя Крафтса

Фриделя алкилирования



© 2025 chem21.info Реклама на сайте