Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Элонгация полипептида

    Возможно существование каких-то регуляторных белков или малых рибонуклеопротеидов, которые взаимодействуют с транслирующей рибосомой и избирательно останавливают или затрудняют элонгацию в определенных местах. Известен пример таких специфичных репрессоров элонгации в эукариотах это рибонуклеопротеид-ная частица, содержащая 7S РНК частица узнает особую N-концевую гидрофобную последовательность образующегося полипептида на транслирующей рибосоме, присоединяется к рибосомам и останавливает элонгацию до тех пор, пока рибосома не вступит во взаимодействие с мембраной эндоплазматического ретикулума (см. В.IX.2). Не исключено, что подобные механизмы используются для регуляции скорости элонгации на других стадиях синтеза белка, например, на определенных стадиях сворачивания белка или сборки белка на транслирующей рибосоме. [c.213]


    Условия, необходимые для инициации, обычно оказываются более сложными, чем те, которые требуются для элонгации. Все компоненты, участвующие в элонгации, также необходимы и для инициации, однако в последнем случае подключаются еще и дополнительные полипептиды. Вспомогательные факторы не всегда могут рассматриваться как субъединицы РНК-полимеразы. В основе принципа, по которому проводятся эти различия, лежит [c.132]

    Следующая стадия синтеза полипептида представляет собой многократное повторение цикла присоединения очередной аминокислоты к растущей полипептидной цепи. Это так называемая стадия элонгации, для осуществления которой в случае прокариот необходимо участие двух белковых факторов-EF-Tu и EF-G. Аналогичные факторы элонгации эукариотических клеток называются EF-1 и EF-2. Фактор элонгации EF-Tu в комплексе с кофактором GTP связывается с любой аминоацил- [c.44]

    Рибосомы производят элементы молекулярного аппарата для большей части клеточных функций ферменты, белки-переносчики, рецепторы, преобразователи, сократительные и опорные элементы и белки мембран. Как и в ядре, эти элементы подвержены видоизменениям и распаду при различных вмешательствах. Так, например, на бактерии антибиотики оказывают действие, препятствуя на разных специфических этапах процессу трансляции. Дифтерийный токсин инактивирует в нервных клетках один из факторов элонгации, определяющих сборку полипептидов. [c.86]

    Изучение рибосом физико-химическими методами осложняется тем, что на разных стадиях трансляции, кроме постоянных структурных компонентов, присутствующих в каждой из двух ее субъединиц, рибосома содержит ряд белковых факторов трансляции, которые необходимы для инициации, элонгации и терминации полипептидов. [c.387]

    Ниже приняты следующие сокращения te — время синтеза полипептида (сумма времен элонгации и терми- ации), т. е. время, прошедшее с момента присоединения к инициаторному комплексу следующей за инициа- [c.277]

    Дистанционная мембранная регуляция включает в себя транспорт предшественников синтеза ДНК, РНК и белков, освобождение регуляторных белков. Мембранное управление хромосомным и рибосомальным аппаратами осуществляется также с помощью ионных и кислотно-щелочных сдвигов. Так, активность РНК-полимеразы II, синтезирующей мРНК, повышается с увеличением ионной силы до 0,4 моль/л, причем необходимы Мп и pH 7,5, в то время как ответственная за синтез рРНК РНК-полимераза I максимальную активность развивает при низкой ионной силе в присутствии Mg и при pH 8,5. Эти данные указывают на то, что ионные отношения и pH, зависящие от регуляторной активности мембран, могут быть важным звеном в управлении генным аппаратом. Существует мнение, что сдвиги в ионном гомеостазе клеток в ответ на внешние воздействия служат первичным внутриклеточным индуктором процессов митоза и дифференциальной активности генов. В частности, сдвиг pH в кислую сторону в ряде случаев вызывает деление клеток. Синтез белков также зависит от качественного состава и количественного содержания ионов. Хорошо известна необходимость Mg для сборки рибосом и полирибосом. Инициации трансляции благоприятствует низкая концентрация ионов (NH ) порядка 30 — 50 ммоль/л и pH 7,4 —7,6, а для последующего процесса элонгации полипептида в рибосомальном комплексе оптимальна повышенная концентрация или NH (до [c.37]


    Инициация в процессе биосинтеза белка означает не просто начало элонгации. Прежде всего, так как начало кодирующей последовательности мРНК не совпадает с началом полинуклеотидной цепи, а всегда находится, отступя от ее 5 -конца (иногда на значительное расстояние), необходимо точное узнавание первого кодона на внутренней части цепи. Это узнавание определяет не только начало полипептидной цепи, которая синтезируется, но и задает фазу всего дальнейшего считывания мРНК по триплетам, т. е. абсолютно критично для всей аминокислотной последовательности полипептида. Другими словами, именно инициация определяет фиксированную точку на матричном полинуклеотиде, с которой начинается отсчет триплетов без запятых (см. гл. А.П). [c.221]

    Надо сказать, что вне фазы (рамки) считывания триплеты UAA, UAG и UGA в пределах кодирующей последовательности мРНК встречаются существенно чаще, чем в фазе считывания, где имеется, как правило, всего один терминирующий кодон на всю кодирующую последовательность. Поэтому обычно случайный сдвиг рамки в процессе элонгации не может привести к синтезу очень длинного неправильного полипептида и чаще всего приводит к скорой терминации этой неправильной трансляции. В некодирующих участках мРНК, включая межцистронные участки полицистронных РНК, частота терминирующих триплетов обычно также высока. [c.265]

    С другой стороны, на мембране эндоплазматического ретикулума эукариотических клеток имется специальный рецептор, воспринимающий сигналузнающую частицу в комплексе с рибосомой. Рецептор оказался белком с молекулярной массой 72000 дальтон, частично погруженным в мембрану, в то время как основной его домен обращен в цитоплазму и служит непосредственным причалом для сигналузнающей частицы. Он получил название причального белка . Взаимодействие ассоциированной с рибосомой сигналузнающей частицы с причальным белком мембраны снимает запрет с элонгации синтез пептида возобновляется. Теперь, однако, растущий пептид торчит уже не в водную фазу, а непосредственно в мембрану дальнейшая элонгация приводит к его погружению и вхождению в мембрану прямо из рибосомы, минуя водное окружение цитоплазмы. Происходит так называемая ко-трансляционная транслокация полипептида через мембрану. Более детальные механизмы вхождения полипептида в мембрану и, в случае секреторных белков, его прохождения через нее не известны. [c.283]

    Специфической особенностью полипептидного синтеза является огромное число идентичных стадий, которые необходимо проводить на каждом этапе удлинения цепи образование новой пептидной связи, удаление защитной группы для подготовки к следующей стадии элонгации цепи и промежуточные отмывки от избытка реагентов и, побочных продуктов после каждого химического превращения. Метод, предложенный Робертом Меррифилдом, дал возможность автоматизировать этот процесс и снизить механические потери. Согласно этому методу, первый мономер во вновь строящейся цепи синтезируемого полипептида ковалентно связывается с нерастворимым носителем (смолой) и все последующие стадии проводятся с полипептидом, растущим на этой смоле. Этот метод известен как твердофазный синтез полипептидов. К смоле попеременно добавляют очередной синтон и реагент для удаления концевой защитной группы, остаток). Химические стадии перемежаются соответствующими промывками. В течение всего процесса полипептид остается связанным со смолой. Поместив в колонку смолу, с которой связан синтезируемый пОлипептид, можно легко автоматизировать процесс, запрограммировав смену потоков через колонку синтон (мономер) — растворитель — смесь для удаления защиты — растворитель и т.д. Разработаны специальные приборы для автоматизированного полипептидного синтеза. Так, уже упоминавшийся синтез протеазы ВИЧ-1 провели на автоматическом пептидном синтезаторе <АррИе(1 Biosystem> и потребовалось около двух-10- 291 [c.291]

    Сегодня мы уже многое знаем о процессе белкового синтеза, однако не исключено, что это лишь малая часть того, что нам еще предстоит узнать. По всей вероятности, синтез белка представляет собой самый сложный из биосинтетических процессов он требует очень большого числа ферментов и других специфических макромолекул. В эукариотических клетках в белковом синтезе принимают участие свыше 70 различньк рибосомньк белков, не менее 20 ферментов, необходимых для активации аминокислот-пред-шественников, более десятка вспомогательных ферментов и других особых белковых факторов инициации, элонгации и терминации синтеза-полипептидов. [c.926]

    Голофермент (азрр а) можно разделить биохимическими методами на два компонента минимальный фермент ( зРр ) и сигма-фактор (а-полипептид). В названии компонентов отражен тот факт, что только голофермент может инициировать транскрипцию, а далее сигма-фак-тор освобождается из комплекса и собственно элонгация осуществляется минимальным ферментом. Таким образом, минимальный фермент способен синтезировать фосфодиэфирные связи на ДНК-матрице, но он не может инициировать транскрипцию в нужном участке. [c.133]


    Рибосомный синтез белка заключается в росте полипептидной цепи путем последовательного присоединения очередной аминокислоты к карбоксильной группе предшествующего остатка. Отдельный цикл элонгации включает три этапа связывание аминоацил-тРНК, образование пептидной связи и транслокацию рибосомы — перемещение ее вдоль молекулы мРНК в направлении 5 3 от одного кодона к другому. И так до встречи с одним из трех стоп-кодонов. Рост белковой цепи заканчивается присоединением к стоп-кодону фактора освобождения, останавливающего трансляцию и вызывающего отделение завершенного полипептида от рибосомы. До этого растущий С-конец последовательности все время остается ковалентно фиксированным в пептидилтрансферазном центре, а N-конец — свободным. При отсутствии каких-либо регуляторных воздействий на биосинтез белка скорость считывания мРНК может достигать у прокариот около 50 нуклеотидов в секунду, а эукариот — около 30 [152], Следовательно, элонгация белковой цепи небольших размеров продолжается не менее 10—30 с. За это время совершается множество конформационных изменений растущего пептида, поскольку единичное изменение — поворот атомной группы вокруг одинарной связи, занимает всего 10 — 10 с. [c.406]

    Белоксинтезирующая система всех клеток является Многокомпонентной. Рибосомы играют в этой системе центральную роль, поскольку они организуют весь процесс в целом и катализируют отдельные реакции. Трансляция (собственно синтез белка) подразделяется на три стадии инициацию — начало белкового синтеза, элонгацию— процесс роста полипептидной цепи и стадию тер-минации — освобождение готового полипептида из поли-рибосомного комплекса. [c.285]

    Механизмы регуляции процессов элонгации и терминации изучены еще очень слабо. На уровне элонгации помимо факторов элонгации и GTP лимитировать синтез полипептидов могут изоакцепторные тРНК, спектр которых меняется при разных физиологических состояниях организма и тех или иных воздействиях (например, при дифференцировке тканей, при действии гормонов и т. д.). Существенную роль для синтеза пептидных связей в пептидильном центре рибосомы играют физико-химические условия микросреды (наличие ионов Mg +, Са -", Мп +, pH 8,3-8,4 и т. д.). [c.318]

    Рис 6.5. Гибридная модель элонгации. тРНК показана черточкой, полипептид - волнистой[ линией. [c.58]

    Б. Причина того, что синтез белка прекращается не сразу, а после некоторой задержки, связана с механизмом действия эдеина. Он ингибирует инициацию, не затрагивая реакций элонгации в синтезе белка. Таким образом, ничто не мешает рибосоме, которая только что начала синтезировать новый полипептид, довести синтез до конца. Включение метки продолжается в течение всего периода образования исследуемого белка (в данном случае, глобиновых цепей гемоглобина), т.е. около 1 мин. [c.287]

    Элонгация биосинтеза белка в бактериальной клетке обслуживается тремя белковыми факторами элонгации EF-T , EF-T и EF-G (элонгационные факторы трансляции трех типов—и, s и G). У млекопитающих два фактора элонгации TF-1 и TF2 (трансляционные факторы первый и второй). EF-T (М=47 ООО) и EF-Tg (М = 35000) бактерий соответствует TF-1 (М= 186000) млекопитающих, а EF-G бактерий—TF-2 (М = 70000) млекопитающих. EF-G кшпечной палочки имеет молекулярную массу 77321,45 и представлен полипептидом (701 аминокислотный остаток), первичная структура которого выяснена. [c.292]


Смотреть страницы где упоминается термин Элонгация полипептида: [c.622]    [c.399]    [c.167]    [c.319]    [c.265]    [c.622]    [c.58]    [c.214]    [c.278]    [c.278]    [c.319]    [c.524]    [c.529]    [c.40]    [c.192]    [c.197]    [c.469]    [c.929]    [c.947]    [c.85]    [c.326]    [c.276]    [c.105]    [c.105]    [c.277]    [c.264]    [c.34]    [c.317]    [c.317]    [c.51]   
Генетика с основами селекции (1989) -- [ c.399 ]




ПОИСК





Смотрите так же термины и статьи:

Полипептиды

Элонгация



© 2024 chem21.info Реклама на сайте