Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Трансформация производных

    Микробиологические трансформации производных пиридина. Никотиновая кислота и ее амид (витамин РР или Bs) обычно получают химическим синтезом, однако уже разработаны пути микробных трансформаций соответствующих субстратов  [c.110]

    Во всех точках верхней и нижней ветвей 5-образной кривой б значения производных правых частей соответствуюших дифференциальных уравнений отрицательны, а для промежуточного участка положительны. Таким образом, термодинамические критерии устойчивости стационарного состояния совпадают с соответствующими математическими признаками. При этом значению управляющего параметра а, которому соответствует кривая а на рис. 18.3, отвечает только одно устойчивое стационарное состояние, а значению а, описывающему кривую б, — два (I — верхняя и II — нижняя ветви кривой б). Очевидно, что можно найти и бифуркационное значение параметра а. Это значение соответствует ситуации, при которой последовательная трансформация 8-образной кривой у А, а) из вида а в б впервые приводит к Л (х, а )/ёЛ -> оо или ё х, а )/ёх -> оо. [c.376]


    Некоторые наиболее распространенные типы химической трансформации функциональных групп молекул органических веществ представлены в табл. II1.1. Достаточно широко используются химические методы подготовки проб и неорганических материалов. Помимо получения летучих хелатов металлов и органических производных некоторых анионов [33, 34 1 отметим перспективный метод реакционной газовой экстракции, включающий химическую реакцию с образованием газообразного соединения определяемого элемента, выделение этого соединения в газовую фазу и последующую его идентификацию и определение [351. [c.161]

    Актуальной задачей исследований является расширение синтетического потенциала фурановых соединений. Фурановые производные, в состав которых входят различные 0-, Ы-содержащие гетероциклы, представляют собой уникальное химическое сырье - источники (прекурсоры) для получения широкого ряда ценных в практическом отношении соединений, получение которых иными методами затруднено. Помимо разработки теоретических основ гетероциклической химии и возможного применения соединений фуранового ряда и продуктов их трансформации в качестве полупродуктов для тонкого органического синтеза, огромный интерес представляет изучение биологической активности последних с целью создания препаратов для медицины и сельского хозяйства. [c.29]

    На третьем уровне окисления важнейшие производные, от которых с помощью изогипсических трансформаций возможен переход к чему угод- [c.142]

    Хорощо известно, что различные серосодержащие производные благодаря способности атома серы стабилизировать как карбанионный, так и карбокатионный центры на соседнем атоме углерода, являются ключевыми реагентами во многих методах образования связи С-С. Именно этим и обусловлена высокая синтетическая значимость показанных выше трансформаций тиопроизводных, [c.151]

    Их превращения могут протекать как с сохранением атомов азота, так и с отщеплением молекулы N2 и трансформацией соответствующих карбенов. Реакции с участием диазогруппы приводят, главным образом, к производным гидразина. [c.204]

    Еще одно направление в трансформациях производных 20-гидроксиэкдизона 1 выявлено при исследовании поведения ацетонидов 8 и 22 в условиях каталитического гидрирования. Как [c.470]

    Звягинцева И. С., Витол М. Я., Швачкин Ю. П., Скрябин Г. К-, Микробиологический синтез, Сб. информационных материалов, № 4, 8—16 (1968) (обзор по микробиологической трансформации производных ниримидина). [c.225]

    Основной путь синтеза эпоксидов и вицинальных бифункциональных производных — иеизогипсические (окислительные) трансформации олефинов, о которых мы скажем несколько ниже. Оксираны образуются также в одном из часто употребляемых методов создания С—С-связи путем присоеди1 ения сернистого илида (диметилсульфо-дийметилида 106) к карбонильным соединениям по схеме [c.111]


    Теперь несколько слов об особенностях изогипсических трансформаций аллнльпых систем уроиня окислеиия 2, т. 0. производных типа 107. Нуклеофильное замещение т рупп X л этих системах моя ет происходить и по С-1, п по С-.) с миграцией двойной связи (аллильная перегруппировка). При необходимости эту реакцию можно провести как в том, так и и другом паправлении вполне селек- [c.112]

    К числу полифункциональных производных УРОБНЯ окисления 3, содержапщх две связанные воедино активные группы, относятся а,р-непредельные альдегиды и кетоны. Их значение в синтезе и основные пути получения у ке были описаны в разделе 2.3. Важнейшие изогипсические трансформации этих производных основаны на присоединении к ним разнообразных нуклеофилов но реакции Михаэля, чч о позволяет получать широкий круг -замещен-пых функциональных производных карбонильных соединений. Для большинства из них возможны и обратные превращения путем элиминирования элементов НХ. [c.113]

    В синтезе азотсодержащих производных очень важны пеизогипсические трансформации азотсодержащих функций различных уровней окис.тения. Так, обычным путем получения аминов является восстановление производных кислот (нитри.тов или амидов) или карбопи, гьных соеди-пепий (иминов), [c.114]

    Полизамещенные ацетамиды 1, являющиеся продуктами превращения 2(5Н)-фуранона 2, представляют собой реакционноспособные соединения, открывающие путь к новым многофункциональным производным — 1,3-оксазолидинам. Показана возможность трансформации амидной группы в соединении 1 с участием пятихлористого фосфора и бензиламина, а также под действием алюмогидрида лития, приводящая к оксазолидинам 3,4. [c.43]

    Стабилизация полимеров к фотохимической деструкции основана на введении в полимер соединений, которые легко поглощают световую энергию и трансформируют ее так, что она излучается ими квантами меньшей энергии, безопасными для полимера. Примером таких фотостабилизаторов являются бензофенон и его производные (ди-, триокси-бензофеноны, оксиметоксибензофеноны и др.). Трансформация световой энергии оксибензофеноном протекает через стадию образования хино-идной структуры по схеме [c.292]

    Ко второму уровню окисления, вообш,е говоря, относятся любые производные, содержащие две функциональные группы первого уровня окисления, Если эти фунхции достаточно удалены друг от друга, так, что они не могут оказывать заметного взаимного влияния, то тогда все, что говорилось о производных первого уровня окисления, применимо и к этим случаям. Иная ситуация возникает, когда такие функции находятся у соседних атомов углерода, так что по сути дела они образуют единую функциональную фуппу, как это имеет место в таких соединениях, как оксираны (эпоксиды), 1,2-дизаме-щенные (вицинальные) и аллильные производные. Эпоксиды и 1,2-бифунк-циональные производные алканов — это родственная группа соединений, внутри которой изогипсические трансформации легко осуществимы с помощью стандартного набора внутри- и межмолекулярного нуклеофитьного замещения, как показано на схеме 2,52. [c.140]

    Вдумчивый читатель мог заметить, что в то время как существует множество способов восстановительньгх трансформаций различных функций с образованием насыщенного углеводородного фрагмента, мы ни разу не упомянули о возможности обратной трансформации — перехода с уровня О к производным более высокого уровня окисления. Подобное умолчание не [c.153]

    Как видим, здесь также не требуется создания новой связи С—С, и задача состоит в трансформации функциональных групп превращении полуаце-тального гидроксила галактозы в гликозид и спиртового гидроксила при С-4 в производное с галактозильным остовом. В общей органической химии это самые тривиальные преврашения. Но это далеко не тривиальная задача, когда речь идет о гликозидной связи, Стереосслективнос образование такой связи представляет собой одну из центральных проблем химии углеводов, и многие сотни работ посвящены разработке методов эффективного решения этой проблемы (см., например, обсуждение в монографиях [21Ь]). [c.158]

    Наличие в целевой молекуле шестичленного цикла вовсе не обязате тьно означает, что нужно в первую очередь рассматривать стандартные методы построегшя таких циклов (скажем, реакцию Дильса—Альдера или аннслиро-вание по Робинсону). Полезно помнить об альтернативной возможности, а именно о трансформациях шестичленных ароматических циклов с помощью восстановления по Берчу или каталитического гидрирования. Такой подход обладает двумя стратегически важными достоинствами. Во-первых, при этом отпадает необходимость создания скелета шестичленного цикла. Во-вторых, может резка упроститься задача введение в цикл функциональных и других заместителей, поскольку получение соответствующих производных в [c.310]

    Интересно заметить, как LHASA обходит основной камень преткновения в этом синтезе, а именно сборку требуемого т/ анс-сочленения циклов с помошью реакции Дильса-Альдера. На пути А это достигается серией ретросинтетических трансформаций, генерирующих субструктуру 190, в которой содержится кетогруппа. Наличие последней позволяет прибегнуть к трансформу эпимеризации и выйти к следующей субструктуре 191, легко получаемой по стандартному методу Дильса-Альдера. На пути В устранение стереохимического препятствия достигается с помошью трансформации субструктуры 192 в производное циклогексадиена 193 и далее в 194. Создание диенового фрагмента в целевой структуре открывает неожиданную возможность использовать внутримолекулярный вариант реакции Дильса-Альдера и однопременного за.мыкзния обоих циклов исходя из предшественника 195. [c.361]


    Менее устойчивыми соединениями в почве являются фенолы и их производные, относящиеся к группе веществ, обладающей высокой токсичностью для растений. Фенолы поступают с промьшшенными стоками коксохимического производства и некоторьк химических производств. Они содержатся в осадках городских сточньк вод и могут выщелачиваться оттуда атмосферными осадками, попадая с жидким стоком в почвы и водоёмы. Скорость разложения фенолов в почвах довольно велика (уже через б суток он не обнаруживается). Отсутствие фенолов в почве не всегда связано с их разложением или трансформацией, так как возможна их адсорбция глинистыми минералами, причем глины, насыщенные ионами железа, сорбируют лучше, чем глины, насыщенные ионами алюминия, меди и кальция. [c.54]


Смотреть страницы где упоминается термин Трансформация производных: [c.107]    [c.136]    [c.386]    [c.27]    [c.109]    [c.106]    [c.111]    [c.122]    [c.156]    [c.136]    [c.141]    [c.145]    [c.147]    [c.186]    [c.198]    [c.304]    [c.307]    [c.315]    [c.316]    [c.320]    [c.382]    [c.382]    [c.404]    [c.410]    [c.433]    [c.466]    [c.515]    [c.353]    [c.457]    [c.463]   
Биохимия мембран Кинетика мембранных транспортных ферментов (1988) -- [ c.37 ]




ПОИСК







© 2025 chem21.info Реклама на сайте