Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рецептор молекулярные характеристики

    В табл. 1 приведены сведения о молекулярных характеристиках рецепторов ряда гормонов и других лигандов. Хотя строение некоторых рецепторов изучено в недостаточной степени, общее заключение может быть сделано. Как правило, рецепторы имеют большую молекулярную массу и достаточно часто состоят из нескольких субъединиц (полипептидные цепи). Молекулярная масса рецепторов колеблется в широких пределах и не зависит от природы и молекулярной массы лиганда. Рецепторы одного н того же лиганда, экспрессируемые различными клетками, могут заметно различаться по структурной организации. Это относится, например, к рецепторам инсулина на адипоцитах и клетках мозга, а также к рецепторам соматостатина на клетках мозга и поджелудочной железы. Различия в структурной организации как сходных, так и разных по специфичности рецепторов могут быть связаны с различиями в строении не всей молекулы, а лишь од- [c.13]


Таблица I. Молекулярные характеристики клеточных рецепторов Таблица I. <a href="/info/429523">Молекулярные характеристики</a> клеточных рецепторов
    Несколько свидетельств разного рода указывают на то, что рецептором для ацетилхолина является здесь сравнительно крупный гликопротеин (мол. масса 200 000). Путем изучения влияния токсинов, которые связываются с рецепторами, было установлено, что плотность рецепторов составляет примерно ЮООО/мкм . Это означает, что рецепторы и связанные с ними каналы упакованы в постсинаптической мембране чрезвычайно плотно, с промежутками всего 10 нм или около того. Можно напомнить (см. гл. 7), что это близко к плотности натриевых каналов в перехвате Ранвье, но намного больше плотности этих каналов в аксонах. Такая плотная упаковка химических рецепторов в постсинаптической мембране, по-видимому, является одной из определяющих характеристик данного синапса на молекулярном уровне. [c.208]

    Различные группы мембранных рецепторов были обнаружены на поверхности нейтрофилов (табл. 1). Эти рецепторы осуществляют связь нейтрофилов с их микроокружением и регулируют функциональную активность нейтрофилов адгезию, миграцию, хемотаксис, дегрануляцию и поглощение. В работах последних лет дана молекулярная и функциональная характеристика этих молекул. [c.18]

    Выразительный пример огромного значения точности узнавания можно найти в области химических коммуникаций у насекомых. Так, антенные рецепторы данного насекомого способны уловить и безошибочно идентифицировать единичные молекулы специфического феромона на фоне почти бесконечного многообразия молекул других веществ, присутствующих в окружающей насекомое среде в количествах порядка молей, т. е. при отношении сигнал/шум порядка В результате узнавания рецептором лишь нескольких молекул феромона и взаимодействия с ними происходят драматические изменения поведения всего насекомого. Иначе говоря, микроскопический (молекулярный) сигнал эффективно воздействует на макроскопический объект (многоклеточный организм), что отвечает фантастическим значениям коэффициента усиления сигнала (порадка Ю ). Даже среди самых современных и совершенных технических систем трудно найти усилительные устройства со сравнимыми характеристиками эффективности. С ними можно, пожалуй, сопоставить только соотношение энергии нажатия кнопки в ядерном чемоданчике с энергией взрьша водородной бомбы. [c.475]


    Позвольте мне проиллюстрировать этот тезис. Истинная функция нейрона — передача сигналов. Однако мы увидим (гл. 5), что в нервной системе существуют только два типа сигналов электрические и химические. Важно отметить, что сам сигнал содержит очень мало информации. Его специфичность зависит от мест возникновения и приема, т. е. от клеток органов, между которыми он передается. Так, например, причина того, что мы слышим, а не видим звук, кроется не в электрическом или химическом коде нервного импульса, а в том, что зрительная кора затылочной доли головного мозга соединена с нейронами сетчатки, а не уха. При электрическом или механическом, а не оптическом воздействии на сетчатку мы также будем видеть . Любой, у кого искры из глаз сыпались после сильного удара, может подтвердить это. Следовательно, качественно информация, передаваемая нейроном, зависит исключительно от специфичности его соединения, и только количественная характеристика содержится, по-видимому, в самом сигнале сильный стимулятор посылает больше нервных импульсов от рецептора к воспринимающему органу, чем слабый. Опять же нервные импульсы, скажем, оптической или акустической области нашей нервной системы практически неотличимы от нервных импульсов в совершенно других системах, например у более примитивных форм жизни. Сами по себе эти импульсы очень мало информативны даже для узкого специалиста. Таким образом, нейрохимик, изучающий биохимию нейронов, может выяснить только механизм возникновения и передачи сигналов, специфическое содержание (смысл) сигналов недоступно его методам. Он может изучать общие молекулярные реакции, лежащие в основе обработки сигналов, но не результаты этой обработки, т. е. информацию . [c.8]

    Существенную зависимость научного прогресса от модельных систем можно показать на системе медиатор — рецептор. Понятие рецептор долгое время являлось функциональным описанием, не имеющим молекулярной основы. Успех нейрохимии связан с выделением и химической характеристикой рецепторного белка (гл. 9). В основном это обусловлено выбором идеального материала для модели синаптической передачи нервного импульса электрической ткани электрического угря Ele trophorus ele tri us) и различных видов электрического ската Torpedo) (рис. 12.8 и 12.9). [c.364]

    В родопсине 11-г<мс-ретиналь ковалентно связан с опсином путем образования шиффова основания (альдимина) между его альдегидной группой и е-аминогруппой ли-зинового остатка опсина. Чрезвычайно важное значение имеют также нековалентные взаимодействия между боковыми группами остатков аминокислот белка и л-электрон-ной системой полиена, которые, во-первых, определяют конформацию хромофора в составе родопсина, а во-вторых, вызывают поляризацию 7г-электронной системы поли-енового фрагмента. Энергетические характеристики нековалентных взаимодействий между опсином и полиеновой цепью зависят от структуры белка и сопряженных с ним липидов и углеводов и существенно различаются для различных родопсинов. Именно эти эффекты совместно с индукционным эффектом, возникающим от образования альдиминной связи, обусловливают 1) значительный сдвиг в красноволновую область максимума поглощения 11-цыс-ретиналя в составе родопсина (Ящах = 500 нм) в сравнении с альдегидом в свободном состоянии = 375 нм) 2) вариации величины тах У разных зрительных пигментов. Все это приводит к повышению чувствительности светового и цветового восприятия. Цветовое зрение человека — это трихроматический процесс, за который ответственны рецепторы, чувствительные к разному цвету — синему (Я ах = 440 нм), зеленому ( тах =535 нм) и красному (Я ах = 575 нм) — и содержащие различные пигменты. Различие в Я ах поглощаемого света обусловлено особенностями строения опсина и нековалентных взаимодействий опсин — хромофор. Все детали структуры и функций фоточувствительных пигментов в настоящее время еще не выяснены до конца, но установлено, что в основе механизмов функционирования зрительных пигментов заложены многостадийные циклические процессы. Рассмотрим основные молекулярные события, происходящие при попадании кванта света на сетчатку глаза человека. [c.133]

    Для изучения биохимических характеристик опиатных рецепторов (структуры, молекулярной массы, изоэлектрических свойств) многие годы предпринимались попытки вьщелить их в нативном состоянии из биологических мембран мозга. Однако ОР оказались трудным объектом, они инактивировались под действием ионных детергентов, которые ранее успешно применялись для солюбилизации других рецепторов. Кроме того, попытка полного удаления липидного окружения из препаратов ОР также вела к инактивации. [c.294]

    Особенности распознавания антигена Т-клетками и структурные характеристики собственно Т-клеточных рецепторов (ТКР) заставляют дать описание не только антигенраспознающих молекул, их структуры и генетического контроля, но и представить данные о генетической организации и фенотипических хфодуктах МНС, а также рассказать об участии молекулярных структур комплекса в представлении чужеродного (экзогенного) антигена в иммуногенной форме для антигенных рецепторов Т-клеток. [c.85]


    Механизм влияния коллагена на клетки еще не совсем ясен. Большинство исследователей полагает, что здесь играют роль физические характеристики коллагена, прежде всего пьезоэлектрические свойства, влияющие на заряд наружных мембран клеток, а также наличие рецепторов к коллагену на поверхности клеток. Такие рецепторы найдены на поверхности тромбоцитов [ haing J., Kang A. М., 1976], а в фибробластах рецепторами могут являться мембранный коллаген и особенно фибронектин (см. раздел 1.1.4). В настоящее время возможность информативной функции коллагена связывается с наличием гетерогенности этого белка в разных органах и даже в одном органе (см. раздел 2.2.1). Смена типов коллагена при развитии органов, по-видимому, связана с его морфогенетической функцией. Информация, таким образом, может быть записана уже на уровне первичной структуры, причем, очевидно, имеют значение не только четыре основных генетически различных типа, но и микрогетерогенность, т. е. наличие многочисленных небольших молекулярных различий внутри типов. [c.175]

    Миниатюризация аналитических приборов, основанных на регистрации света, с помощью систем волоконной оптики предоставляет неисчерпаемые возможности для использования в биосенсорах. Быстрое развитие оптикоэлектронных приборов твердотельных лазеров, интегральных оптикоэлектронных схем, новых типов оптических волокон, соединителей, мультиплексеров-в будущем обещает миниатюризацию не только сенсоров, но и вообще измерительного оборудования. Кроме того, достижения молекулярной биологии и особенно белковой инженерии сделают возможным конструирование для биосенсоров специальных рецепторов с желаемыми характеристиками. Эти два направления приведут к появлению совершенно нового поколения высокоселективных миниатюрных, портативных, стабильных и недорогих биосенсоров, которые можно будет применять как в медицине, так и в промышленности. [c.516]

    В целом механизмы ассоциаций аллелей системы HLA мало понятны. Предположительно они могут включать следуюшие характеристики 1) молекулярную мимикрию (перекрёстная реактивность между вирусами, бактериями, внеш-несредовыми факторами и Аг HLA) 2) гены иммунного ответа, сцепленные с HLA 3) комплементарные гены, сцепленные с HLA 4) гены ферментов, сцепленные с HLA 5) Аг HLA, функционирующие как рецепторы вирусных патогенов 6) сцепленные гены, детерминирующие или контролирующие процессы дифференцировки 7) разрушение или модификацию Аг HLA как результат воздействия инфекционного агента, лекарства и внешнесредового фактора. Понимание этих механизмов позволит глубже изучить патогенез болезни. [c.215]


Смотреть страницы где упоминается термин Рецептор молекулярные характеристики: [c.475]    [c.17]    [c.287]    [c.58]    [c.93]    [c.278]    [c.84]    [c.312]    [c.2]    [c.117]    [c.160]   
Биохимия мембран Рецепторы клеточных мембран (1987) -- [ c.13 , c.14 ]




ПОИСК







© 2024 chem21.info Реклама на сайте