Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гемоглобин варианты у человека

Таблица 5.3. Некоторые варианты гемоглобина А человека Таблица 5.3. <a href="/info/1484000">Некоторые варианты</a> гемоглобина А человека

    Изоферменты групп 1 и 2 (табл. 12.4) встречаются у всех особей данного вида, но изоферменты группы 3 (возникшие в результате аллельных вариаций) имеются только у определенных особей. У человека наиболее изученным примером генетического полиморфизма белка является полиморфизм гемоглобина, для которого описано более 150 вариантов [3023]. Подобные варианты, по-видимому, имеются у большинства других белков, в том числе и у ферментов, и если последние различаются по своим свойствам, то их рассматривают как изоферменты. Известен по крайней мере 21 вариант глюкозо-6-фосфат — дегидрогеназы (КФ 1.1.1.49) человека [1790]. Индивидуумы, гетерозиготные по данному гену, синтезируют обычный и видоизмененный белки, и если рассматриваемый фермент является димером или более сложным олигомером, могут образовывать- [c.114]

    Группы крови АВО и заболеваемость. Ни одна генетическая система у человека не изучена так детально, как система вариантов гемоглобина. [c.327]

    Изменение нуклеотидной последовательности молекулы ДНК может отразиться на первичной (аминокислотной) структуре белка или на регуляции его синтеза. Так, большой опыт изучения молекулярной природы мутаций гемоглобина показывает, что значительная часть таких мутаций не изменяет функции гемоглобина. Такие мутации нейтральны и не подвергаются отбору. Другие мутации приводят к функциональным отклонениям в молекуле белка. Эти отклонения в каких-то условиях жизни организма могут оказаться полезными, т.е. иметь адаптивное значение, поэтому сохранятся, а иногда и умножатся в последующих поколениях. Именно таким путём возникали и сохранялись в популяциях разнообразные варианты структурных, транспортных и ферментных белков организма. Свойственный организму человека широкий белковый полиморфизм, благодаря которому каждый индивид биохимически неповторим, обусловлен исходно мутационной изменчивостью и отбором адаптивных белковых вариантов. [c.35]

    Примером того, как историческое объяснение может оказаться альтернативой теории, исходящей из стационарного состояния популяции, служит исследование частот вариантов гемоглобина у человека, проведенное Хэйхом и Смитом (1972). Чтобы объяснить нехватку вариантов в интервале частот между 10 2 и 10-3 JJ наличие среди всех имеющихся в настоящее время аллелей 5% таких, существование которых предсказывает гипотеза нейтральности мутаций и дрейфа, они предложили две альтернативы. Согласно одной из них, эволюция гемоглобинов была адаптивной. Согласно другой, человечество прошло в недавнем прошлом через период резкого снижения численности, продолжавшийся 2N поколений. Например, если N равно 10 000, то период прохождения бутылочного горлышка должен был длиться 20 ООО поколений, или 400 ООО лет, и окончиться примерно 600 поколений, или 12 ООО лет, назад. [c.276]


    После многолетних исследований серповидноклеточной анемии (малокровия) стало очевидным, что мутация определенного гена приводит к изменениям химической структуры молекулы гемоглобина. Основной тип гемоглобина взрослого человека состоит из четырех полипептидных (белковых) цепей двух идентичных а-цепей и двух идентичных Р-цепей (агРг). В 1957 г. В. Ингрем обнаружил, что нормальный и серповидноклеточный гемоглобины содержат одинаковые а-цепи, но различные (3-цепи. Различия между нормальной и мутантной (З-цепью заключались в том, что в серповидноклеточном гемоглобине остаток глутаминовой кислоты в 6-м положении заменен на остаток валина. Таким образом, различия между нормальным и мутантным вариантом, вызывающим заболевание, явились следствием молекулярного события — замены единственной аминокислоты в соответствующем белке. Выяснение природы серповидноклеточной анемии дало название целому классу заболеваний человека — молекулярные болезни . [c.72]

    Эти данные означают, что пролин определяется кодоном, в котором по крайней мере два нуклеотида представляют собой либо А, либо Ц. Тран-зиция по одному из этих нуклеотидов типа А- Г или Ц-> У приводит к тому, что пролиновый кодон превращается в сериновый, тогда как соответствующая транзиция по второму нуклеотиду приводит к образованию лейцинового кодона. В фенилаланиновом кодоне оба эти нуклеотида должны быть либо Г, либо У. Аналогичным образом можно построить схемы взаимоотношений между родственными кодонами для других аминокислот, исходя из аминокислотных замен, обнаруживаемых в белках мутантов вируса. Помимо этого, был получен ряд данных относительно аминокислотных замен при мутациях в других белках, в частности у различных вариантов гемоглобина человека. Вполне вероятно, что сопоставление результатов таких трудоемких экспериментов в конце концов привело бы к расшифровке генетического кода. Однако летом 1961 г. М. Ниренберг сделал открытие, которое дало возможность расшифровать код гораздо более быстрым способом. [c.436]

    Гемоглобин А, представляющий собой основной тип гемоглобина у взрослого человека, состоит из четырех полипептидных цепей-двух идентичных а-цепей и двух идентичных Р-цепей ( гРг). В 1957 г. Вернон Ингрэм показал, что нормальный и серповидноклеточный гемоглобины содержат одинаковые а-цепи, но различные р-цепи. В щестом положении Р-цепи нормального гемоглобина находится остаток глутаминовой кислоты, у серповидноклеточного гемоглобина он заменен на остаток валина (рис. 10.12). В данном случае различия между нормальным и мутантным аллельными вариантами являются следствием единственной аминокислотной замены в соответствующем белке. Таким образом, ста- [c.19]

    Благодаря методам генной инженерии исследователи получили возможность использовать для изучения клеточных механизмов мутации человека. Например, известно, что группа наследственных заболеваний крови, объединяемых под названием талассемии, характеризуется резким падением уровня гемоглобина. Секвенирование ДНК 50 больных талассемией показало, что в большинстве случаев снижение уровня гемоглобина было вызвано нарушением в сплайсинге РНК. Единичные замены нуклеотидов, обнаруженные в ДНК, либо инактивировали сайт сплайсинга, либо приводили к возникновению нового такого сайта. Удивительно, но анализ мРНК этих же больных показал, что потеря сайта сплайсинга не ведет к его отменению оставшийся нормальным второй, участвующий в сплайсинге сайт, ищет поблизости подходящий участок и соединяется с ним. Нри этом может реализоваться несколько вариантов сплайсинга, т. е. мутантный ген способен детерминировать несколько измененных белков (рис. [c.159]

    Анализ нуклеотидных последовательностей ДНК и аминокислотных последовательностей позволяет уточнить представление о механизмах возникновения мутаций. При этом особенно информативными оказались варианты гемоглобина человека (разд. 4.3). Большинство известных мутаций возникло в результате замены одного основания на другое меньшинство возникает вследствие делеций нескольких пар оснований, сдвига рамки считывания, элонгации полипептидной цепи, обусловленной мутацией в терминирующем кодоне, и рекомбинационных событий, приводящих к мутационноподобным эффектам (гемоглобин типа Lepore). При переходе на молекулярный уровень снова возникает множество вопросов, некоторые из которых нам уже известны из обсуждения исследований на фенотипическом уровне. [c.185]

    Аминокислотные последовательности белков [51, 81]. Одним из основных достижений биохимии явилось определение аминокислотных последовательностей белков. Гомологичность аминокислотных последовательностей родственных белков стала очевидной вскоре после того, как в конце 1950-х и начале 1960-х гг. были разработаны методы секвенирования. С помощью этих методов была выявлена гомологичность разных, но функционально родственных белков одного и того же вида. По некоторым позициям эти последовательности, как правило, демонстрировали идентичность, а по другим различались. Из результатов изучения ряда вариантов гемоглобина человека в то время бьшо уже известно, что точковые мутации обычно приводят к замещению одной отдельной аминокислоты в полипептидной цепи. В ходе расшифровки генетического кода было показано, что такие замены вызываются замещением одного-единственного основания, происходапцим при транскрибировании цепи ДНК. Это открытие стимулировало выяснение эволюционных взаимосвязей между видами путем сравнения числа различий в аминокислотных последовательностях их гомологичных белков. В таких работах строились филогенетические деревья, которые могли сопоставляться с соответствующими схемами, полученными на основе классических палеонтологических и морфологических данных. Методы построения этих деревьев описаны многими авторами [51 1919 1921 1954]. [c.17]


    Сравнение данных по белкам с данными по хромосомам и сателлитной ДНК. Данные об эволюции белков свидетельствуют, что различия между белками Homo и таких высших приматов, как шимпанзе и горилла, удивительно малы. Можно считать, что эти белки практически одинаковы. Например, видовые различия молекул гемоглобина с функциональной точки зрения менее значительны, чем различия между редкими вариантами, имеющимися в популяциях человека, которые, хотя и могут приводить к легкой гемолитической анемии, вполне совместимы с жизнью. Такую крайне медленную эволюцию можно объяснить, предположив, что функция этих белков осталась в основном неизменной. Если мы обратимся к кариотипам, то обнаружим, что они отличаются небольшим числом хромосомных перестроек, главным образом перицентрических инверсий. Похожие перестройки встречаются, причем не так уж редко, в современной популяции человека и совсем не влияют на фенотип. Ими можно было бы объяснить образование репродуктивных барьеров, бывших когда-то важным условием видообразования однако они ничего не говорят нам о генетических механизмах, обусловивших формирование специфического фенотипа человека. О функциях добавочных R- и Т-сегментов и о видовых различиях по гетерохроматиновому материалу и сателлитной ДНК известно [c.26]

    Практические трудности. Кроме этах кощептуальных проблем имеются тавсже практические препятствия, которые тормозят научный прогресс в этой области. Для изучения генетической изменчивости обычно необходимо обследование значительной группы индивидов. Его легко провести, если изучаемый материал доступен в такой степени, как кровь или даже биоптат кожи. Именно в доступности крови заключена основная причина того, что наследственная изменчивость эритроцитарных ферментов (разд. 4.2.2.2) и вариантов гемоглобина настолько хорошо изучены (разд. 4.3). Исследование функций мозга человека основано преимущественно на непрямых методах, поскольку соответствующий ма-тфиал возможно получить лищь в крайне редких случаях аутопсии. [c.48]

    С помощью электрофореза на ацетате целлюлозы легко можно разделить целый ряд различных видов гемоглобина человека, например гемоглобины А, Р, 5 и С. Однако при электрофорезе в щелочных условиях нельзя отделить НЬ5 от других гемоглобинов, имеющих сходный заряд, а также НЬС от тех вариантой гемоглобина, которые, подобно НЬС, отличаются от НЬА на два заряда (НЬЕ и НЬО). Из-за незначительных различий в подвижностях гемоглобинов А и Р трудно обнаружить небольшие количества НЬА в присутствии больших количеств НЬР, и наоборот. Шмитд и Холланд [1136], проводившие оценку готовых наборов, предназначенных для электрофореза гемоглобинов (на ацетате целлюлозы), подчеркивают, что на каждую пластинку ацетата целлюлозы следует наносить набор свидетелей, содержащий гемоглобины А, Р, 5 и С. Они также пришли к выводу, что некоторые партии ацетата целлюлозы дают плохие результаты. Шмидт и Брозиус [1135] обращают внимание на тот факт, что источником ошибок при тестах на аномальные виды гемоглобина нередко является неверная интерпретация электрофоретической картины. Поэтому считают необходимым при определении фенотипа гемоглобина использовать по меньшей мере два метода, например электрофорез при разных pH или электрофорез при одном значении pH в сочетании с тестом на растворимость НЬ5. [c.322]

    Неоклассическую гипотезу нельзя опровергнуть, низвергая нейтралистское пугало, которое мы сами воздвигли. Так, например, демонстрация того, что замещения отдельных аминокислот приводят в некоторых случаях к резким физиологическим различиям, ни о чем еще не говорит. Диапазон влияний таких замещений можно проиллюстрировать на примере гемоглобина человека. Из 59 вариантов а- и р-цепей, перечисленных Харрисом (1970), для 43 не обнаружено никакого физиологического действия на организм, по крайней мере в гетерозиготном состоянии 5 вызывают метгемоглобинемии, так как замещения происходят вблизи участка, где находится железо гема, и 11 вызывают нестабильность гемоглобина, в результате которой возникает гемолитическая анемия различной степени тяжести. Хотя большая часть вариантов последней группы образуется в результате замещения незаряженных аминокислот внутри трехмерной структуры также незаряженными, два из них вызваны изменением заряда в положении 6 на поверхности молекулы. В одном случае замещение глутаминовой кислоты (—) лизином ( + ) приводит к появлению гемоглобина С, а в другом— замещение ее валином (0) приводит к образованию знаменитого гемоглобина 5, обусловливающего серповидноклеточную анемию (Перутц и Леман, 1968). [c.203]

    Кроме нормальных различий по кинетике, у некоторых электрофоретических вариантов изменяется стабильность или растворимость при нагревании или изменении концентрации ионов. Например, серповидноклеточная анемия связана с нерастворимостью окисленной формы молекулы гемоглобина S. Как гемоглобин S, так и умеренно вредный гемоглобин С представляют собой варианты, обусловленные замещениями в шестом положении на поверхности белка. Три аллеля кислой фосфатазы эритроцитов человека продуцируют белки, располагающиеся по устойчивости к нагреванию в следующем порядке р <рв<рс который сохраняется и для их активностей при нормальной температуре (Лаффман и Харрис, 1967). Аллоферменты щелочной фосфатазы плаценты также отличаются по теплоустойчивости наиболее устойчивый фермент в 3—5 раз более устойчив, чем наименее устойчивый (Томас и Харрис, [c.267]

    По мере совершенствования методов электрофореза были выявлены более 400 вариантов гемоглобина и расшифрована их полная аминокислотная последовательность. Установлено, что молекула человеческого гемоглобина состоит из 4-х полипептидных цепей (а,р,у,6). Большинство разновидностей гемоглобина человека имеет идентичные а-цепи и различаются по остальным цепям. К каждой цепи глобина в специфическом участке присоединяется молекула небелковой природы — гемофуппа, или гем. Четыре глобиновых цепи вместе с гемами образуют функциональную молекулу гемоглобина, которая переносит кислород из легких в ткани. [c.208]


Смотреть страницы где упоминается термин Гемоглобин варианты у человека: [c.89]    [c.41]    [c.344]    [c.32]    [c.187]    [c.325]    [c.81]    [c.98]   
Генетические основы эволюции (1978) -- [ c.276 ]




ПОИСК





Смотрите так же термины и статьи:

Варианта

Гемоглобин



© 2025 chem21.info Реклама на сайте