Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рентгеноструктурный анализ, молекулы белка

    Дифракция рентгеновских лучей — самый эффективный современный метод изучения структуры больших молекул. Во многих случаях рентгеноструктурный анализ кристаллов белков или нуклеиновых кислот позволил полностью определить третичную структуру этих молекул с разрешением 3 А или лучше. Дифракция рентгеновских лучей дает богатую структурную информацию и тогда, когда образцы (например, ориентированные волокна) обладают меньшей, чем у кристаллов, упорядоченностью. Эта информация не позволяет однозначно определить структуру молекул, но она может служить в качестве решающего теста при выборе той или иной модели структуры. Ниже мы излагаем теорию дифракции рентгеновских лучей и знакомим читателя с некоторыми этапами определения структуры по дифракционным данным. [c.309]


    При расшифровке третичной структуры белков решающую роль сыграл рентгенографический метод, который в 1957 г. позволил английскому исследователю Кендрью впервые определить третичную структуру миоглобина. В дальнейшем рентгеноструктурный анализ позволил установить пространственное строение многих других белков и связать его с их биологической функцией. Так, молекула лизоцима — фермента, расщепляющего полисахариды — имеет трехмерную структуру, показанную на рис. 67. Стрелкой показана впадина, представляющая собой активный центр фермента сюда подходит молекула полисахарида, подвергающегося расщеплению. [c.642]

    Сведения о форме молекул получают непосредственно с помощью электронной микроскопии и рентгеноструктурного анализа комплексов белков с тяжелыми металлами. [c.510]

    Интенсивное изучение пространственного строения синтетических полипептидов продолжалось в течение 1950-х и первой половины 1960-х годов. Были привлечены практически все известные физические и физикохимические методы, позволяющие получать информацию о строении молекул в твердом состоянии и в растворах. Наибольшее количество данных было получено с помощью рентгеноструктурного анализа, методов рассеяния рентгеновских лучей под малыми углами, дисперсии оптического вращения, кругового дихроизма и дейтерообмена, с помощью обычных и поляризованных инфракрасных спектров. Из полученного при исследовании синтетических полипептидов огромного экспериментального материала, однако, не удалось сделать обобщающих заключений о причинах стабильности регулярных структур и сказать что-либо определенное на этой основе о принципах структурной организации белков. И тем не менее, результаты исследования повсеместно были восприняты как подтверждающие ставшее общепринятым представление о том, что пространственное строение белковой глобулы представляет собой ансамбль унифицированных регулярных блоков вторичных структур, прямую информацию о геометрии которых дают высокомолекулярные синтетические пептиды. а-Спиральная концепция Полинга не только не была поставлена под сомнение, но еще более утвердилась. В 1967 г. Г. Фасман писал "Общепризнано, что лишь несколько конформаций, благодаря своей внутренней термодинамической стабильности, будут встречаться наиболее часто и, по-видимому, именно они составляют общую основу белковой структуры" [5. С. 255]. Между тем, в то время уже были известны факты, настораживающие от безусловного принятия а-спиральной концепции Полинга. Но они выпадали из множества других фактов, согласующихся с традиционным представлением, казавшимся логичным и правдоподобным, к тому же не имевшим альтернативы. Поэтому на данные, противоречащие концепции Полинга, долгое время не обращали внимания. [c.72]


    Поразительная специфичность действия ферментов привела к созданию теории замка и ключа, согласно которой для протекания реакции необходимо точное структурное соответствие между субстратом и активным центром фермента. Проведенные эксперименты убедительно доказали адекватность этой идеи, однако сама теория претерпела существенное изменение. Считается, что если фермент — это замок , а субстрат — ключ , то введение ключа в замок часто индуцирует конформационные изменения в молекуле белка. Имеется множество работ, в которых показано, что фермент укладывается вокруг субстрата, обеспечивая более точное соответствие подгоняемых структур. В пользу этого говорят данные по изменению спектров кругового дихроизма, спектров поглощения в УФ-области и констант седиментации, а также результаты исследования структуры комплексов ферментов с ингибиторами методом рентгеноструктурного анализа. Как мы уже видели ранее (гл. 4, разд. Д, I), идея индуцированного соответствия оказывается весьма плодотворной и при обсуждении взаимодействий субъединиц. [c.42]

    Другая проблема, также связанная с подготовкой кристаллов к съемке, возникла значительно позже, когда в принципе была решена фазовая проблема и встала задача получения кристаллов изоморфных производных. На первых же порах, после получения прекрасных дифракционных снимков глобулярных белков, требовалось решить вопрос об их расшифровке. В чем же заключалась новизна рентгеноструктурного анализа глобулярных белков по сравнению с анализом малых молекул и фибриллярных белков Суть рентгеноструктурного анализа любого монокристалла состоит в определении амплитуд всех дифрагированных лучей (отражений) и их фаз. Зная амплитуды и фазы, можно воспроизвести распределение электронной плотности элементарной кристаллической ячейки и, следовательно, найти ее геометрические параметры, а также параметры структуры образующих ее молекул. Амплитуды определяются по интенсивностям рефлексов, но найти фазы путем непосредственных измерений нельзя. В связи с этим как в кристаллографии малых молекул, так и в кристаллографии белков возникает так называемая фазовая проблема - основная проблема расшифровки любой кристаллографической структуры. В рентгеноструктурном анализе малых молекул для ее решения разработаны прямой метод, метод Паттерсона, метод проб и ошибок, метод изоморфного замещения. Со временем каждый из них приобрел целый ряд [c.40]

    Данные о гидродинамических свойствах белков в растворе и оценка размеров элементарной ячейки, полученная с помощью рентгеноструктурного анализа кристаллических белков, свидетельствуют о компактности и жесткости белковой молекулы. Эти свойства белка нельзя объяснить одной лишь вторичной спиральной структурой, даже если принять во внимание наличие дисульфидных связей и остатков пролина. Легкость, с которой эта компактность может быть нарушена, свидетельствует вместе с тем о том, что структура стабилизирована не ковалентными связями. Стабилизация плотно свернутой третичной структуры глобулярных белков достигается за счет взаимодействия боковых цепей аминокислотных остатков, обладающих указанными выше химическими свойствами. Силы взаимодействия каждая в отдельности не велики ионное взаимодействие, водородные связи, гидрофобное взаимодействие и вандерваальсовы силы. Но поскольку число этих слабых связей очень велико и все они действуют одновременно по всей свернутой структуре белка, она обладает достаточной устойчивостью при обычной температуре. Оценить относительное значение связей различного типа в поддержании третичной структуры очень трудно и на этот счет еще нет единого мнения. [c.26]

    Систематическая работа с белками началась в конце 1920-х годов У. Астбери, который был привлечен для решения проблемы пространственного строения шерстяных волокон У. Брэггом. Позднее в содружестве со специалистами по химии шерсти он изучал с помощью рентгеноструктурного анализа фибриллярные белки, начав с кератина (см. гл. 1). Другой выдающийся ученик школы У. Брэгга, Дж. Бернал, начал в 1934 г. изучение кристаллических глобулярных белков. Он работал с И. Фанкухеном и Д. Кроуфут (Ходжкин). Вскоре к ним присоединились М. Перутц, бывший студент Л. Брэгга, избравший в 1937 г. предметом своей диссертации определение кристаллической структуры гемоглобина, Д. Райли и Дж. Бойес-Уотсон. С 1946 г. сначала вместе с М. Перутцем, а потом самостоятельно в этой области начал работать Дж. Кендрью, также ученик Л. Брэгга, а с 1955 г. -Д. Филлипс. Если сюда же присоединить Ф. Крика, ставшего заниматься белками в 1949 г., то получим почти полный список лиц, создавших кристаллографию белка и вьшолнивших пионерские исследования по расшифровке трехмерных структур белковых молекул. Путь к этому прошел через решение следующих проблем 1) получение белковых кристаллов 2) решение проблем фаз 3) получение изоморфных [c.39]


    Следующая проблема — как упакована полипептидная цепь Она никогда не бывает вытянутой в нитку. Цепь образует петли, клубки, закручивается в спираль. Эту трехмерную пространственную организацию белковой молекулы исследуют путем рентгеноструктурного анализа. Кристаллы белка облучают пучком рентгеновских лучей и по отклонению рентгеновских лучей вблизи ядра того или иного атома определяют, в каком месте кристалла он расположен. Затем полученные результаты сопоставляют с данными по аминокислотной последовательности и строят модель молекулы белка. [c.124]

    Молекулярная биология изучает биологические структуры и их функции на молекулярном и атомном уровне. Как научное направление молекулярная биология начала развиваться в период 1930—1940 гг., когда были достигнуты успехи в понимании тонкой структуры и свойств небольших молекул благодаря применению спектральных и магнитных методов, в первую очередь дифракции рентгеновских лучей на кристаллах (рентгеноструктурный анализ) и дифракции электронов молекулами газа этим успехам способствовал и прогресс в теории, связанный с появлением квантовой механики. Первые рентгенограммы фибриллярных белков и целлюлозы были получены в 1918 г., кристаллов глобулярных белков —в 1934 г. но только много лет спустя удалось полностью расшифровать строение белковых молекул. [c.428]

    Рентгеноструктурный анализ кристаллов позволил установить полную пространственную структуру ряда глобулярных белков. Было показано, что вторичная структура этих белков представлена главным образом а-спиралью и двумя типами складчатого слоя. При помощи рентгеноструктурного анализа можно установить и положение каталитически активного центра в молекуле фермента, соединенного с ингибитором. [c.443]

    Определение третичной и четвертичной структур белковых молекул осуществляется физическими методами, в первую очередь, рентгеноструктурным анализом. Спектроскопические методы (ИК-, ЯМР-, УФ-) также приносят определенную информацию о пространственном строении белков, но эта [c.100]

    Все белки, изученные до сих пор, обладают антигенными св-вами. У белков различают линейные детерминанты, построенные из аминокислотных остатков, расположенных рядом в одном участке полипептидной цепи, и конформационные, к-рые слагаются из аминокислотных остатков разных участков одной или большего числа полипептидных цепей. Антитела, полученные при иммунизации данного животного определенным белком, могут реагировать, хотя и с небольшим сродством, с нек-рыми пептидами, выделенными из гидролизата зтого белка. Такие пептиды, построенные из 5-7 остатков, часто располагаются на изгибах или выступающих отрезках пептидной цепи и, очевидно, являются детерминантами или их частями. Однако в иных условиях, напр, при иммунизации др. вида животного, могут образовываться антитела к иным участкам молекулы того же белкового А. Практически вся пов-сть белковых молекул обладает антигенными св-вами, она, т. обр., представляет собой сумму перекрывающихся детерминант, каждая из к-рых может вызывать иммунную р-цию или не вызывать ее в конкретных условиях. Последние определяются различиями в строении между белковым А, и собственными белками организма, а также регуляторными иммунными механизмами, находящимися под генетич. контролем. По-видимому, почти все детерминанты белков конформационно зависимы. Согласно данным рентгеноструктурного анализа, антигенные детерминанты обладают повыш. подвижностью. [c.174]

    В последние годы рентгеноструктурный анализ широко применяется Для определения структуры молекул белков и нуклеиновых кислот. Длины и углы связей, точно установленные для малых молекул, ис-, лользуются как стандартные значения в предположении, что они сохраняются такими же и в более сложных полимерных структурах. Одним 3 этапов определения структуры белков и нуклеиновых кислот является построение молекулярных моделей полимеров, согласующихся с рентгеновскими данными и сохраняющих стандартные значения длин связей и валентных углов (рис. 4-19, ) [71]. [c.183]

    По прошествии более трех десятилетий со времени расшифровки структур миоглобина и гемоглобина рентгеноструктурный анализ все еще остается единственным прямым методом определения на атомном уровне пространственного строения белковых молекул, их комплексов и доменов. Полученные с его помощью данные по-прежнему служат незаменимой экспериментальной основой изучения структурно-функциональной организации молекул белков. В 1990-е годы этот метод, по-прежнему сохраняя высокий темп экстенсивного развития, позволил приступить к решению принципиально новых задач, представляющих первостепенный интерес для молекулярной биологии. Основная, если не единственная, причина наметившегося качественного роста возможностей кристаллографии белков связана с использованием вместо излучения рентгеновских трубок синхротронной радиации. [c.74]

    Влияние, которое оказали результаты рентгеноструктурного анализа белков на изучение их фракций, детально рассматривается в следующем томе настоящего издания. Здесь хотелось бы обратить внимание на то, что наличие уже в течение нескольких десятилетий уникальной структурной информации все еще не привело к концептуальному развитию или переосмыслению представлений о природе и принципах функционирования белков, сложившихся до становления кристаллографии макромолекул. Ставшие доступными данные рентгеноструктурного анализа о пространственном строении белковых молекул не вызвали качественных изменений в понимании биокатализа, гормон-рецепторных взаимодействий и многих других явлений. Функционирование биосистем молекулярного уровня не обрело строгой трактовки в рамках сформулированных ранее концепций ферментативных и иных реакций, равно как и последние не получили на основе структурных данных своей объективной оценки. По-прежнему, фундаментальные различия между обычными химическими реакциями в растворе и реакциями, осуществляемыми ферментами, продолжают видеться в напряжении и деформации субстрата при его сорбции в активном центре в сторону переходного состояния, в индуцированном соответствии и принудительных конформационных изменениях фермента, в его изна- [c.75]

    В основе всех поисков предсказательных алгоритмов лежит конформационная концепция Полинга, согласно которой трехмерная структура белка представляет собой ансамбль регулярных вторичных структур. Позднее, развивая идею Полинга и Кори о взаимодействии вторичных структур, в конформационный ансамбль были включены супервторичные структуры. Единство всех исследований по отношению к этой концепции неизбежно, поскольку в противном случае очевидна бесперспективность поиска эмпирических корреляций и предсказательных алгоритмов, базирующихся на статистической обработке известных кристаллографических данных. Если основу пространственного строения сложных белковых макромолекул образуют не только отдельные немногочисленные стандартные блоки, но и практически неограниченное количество разнообразных нерегулярных структурных сегментов, то, очевидно, нельзя рассчитывать на его описание с помощью простых правил, выведенных путем статистической обработки всегда ограниченного экспериментального материала. Результаты рентгеноструктурного анализа свидетельствуют о том, что общее содержание вторичных форм полипептидной цепи в белках сравнительно невелико, во всяком случае его доверительное значение не превышает 50%. Реализующиеся в нативных конформациях белковых молекул а-спирали и р-структуры в действительности не являются, более того, у гетерогенных аминокислотных последовательностей никогда не могут являться, строго регулярными (отклонения соответствующих двугранных углов (ф, (/) от их значений в гомогенной цепи составляют, как правило, десятки градусов, а иногда достигают 100-120°). Анализ также показал, что все стандартные аминокислотные остатки (за исключением Pro) имеют практически одинаковые возможности для встраивания в а-спираль, р-структуру и неупорядоченные участки. Выбор определяется не индивидуальными свойствами остатков, а их комбинацией в последовательности. [c.78]

    В рассмотренной конформационной теории белка не постулируется образование в процессе структурной самоорганизации вторичных, регулярных структур. а-Спирали и р-складчатые листы должны автоматически появляться по ходу расчета на тех участках последовательности, где они оказываются самыми предпочтительными по энергии. Не привлекаются также данные рентгеноструктурного анализа белков и результаты их статистической обработки. Физическая теория и соответствующий расчетный метод исходят только из отмеченных выше четырех принципов, знания аминокислотной последовательности и валентной схемы белковой молекулы. Таким образом, в отношении пространственного строения белка теория является априорной. Предсказание трехмерной структуры строится на количественной оценке взаимодействий между всеми валентно-несвязанными атомами. При этом, однако, не требуется делать специальных предположений о роли в пространственной организации белковой молекулы водородных связей, ионных пар, дисульфидных мостиков и других видов взаимодействий. Так называемые гидрофобные [c.106]

    История исследований белков, по сравнению с другими классами природных соединений, наиболее богата событиями и открытиями, поскольку эти вещества вездесущи в живой природе, очень многообразны и наиболее сложны по структуре. Кроме того, их сложность и большие молекулярные размеры сочетаются с низкой устойчивостью и трудностью индивидуального выделения. Но к настоящему времени многие барьеры на этом пути преодолены. Достаточно быстро и надежно хроматографически определяется аминокислотный состав белков и последовательность их соединения между собой рентгеноструктурный анализ позволяет установить пространственную структуру тех белковых молекул, которые удается получить в виде кристаллов различными вариантами метода ЯМР успешно исследуется поведение белков в растворах, в процессах комплексообразования, т.е. в ситуации, близкой к той, которая имеет место в живой клетке. В настоящее время принято различать четыре структурных уровня в архитектуре белковых молекул первичная,вторичная,третичная и четвертичная структуры белков. [c.94]

    Даже тогда, когда известна полная аминокислотная последовательность белка, из нее невозможно нывести его трехмерную структуру. Для этого необходим рентгеноструктурный анализ кристаллов данного бежа. К настоящему времени кристаллизованы несколько фрагментов миеломных белков и одш интактиая молекула IgG. Данные рентгеноструктурного анализа этих белков подтвердили предсказания иммунохимиков. Еще важнее то, что эти исследования позволили понять, каким образом на основе одной и той же структурной схемы конструируются миллионы различных антиген-связывающИ участков. [c.34]

    Метод отпечатков пальцев нашел широкое применение в решении различных биохимических проблем. Мы приведем лишь три примера. Впервые метод был применен Ингремом [6] для выяснения различий в строении двух однотипных белков — гемоглобинов нормального здорового человека (гемоглобин А) и больного серповидной анемией (гемоглобин 8). Согласно данным рентгеноструктурного анализа, молекула гемоглобина состоит из двух одинаковых половинок, каждая из которых содержит две различные пептидные цепи а-цепь составлена из 141 аминокислотного остатка, -цепь — из [c.236]

    Не могли быть использованы для глобулярных белков методы рентгеноструктурного анализа фибриллярных белков. Рентгенограммы последних вследствие неполной упорядоченности и нестрогой регулярности волокон содержат небольшое число рефлексов (5-50), которые к тому же, как правило, диффузны. Они получаются за счет дифракции рентгеновских лучей на регулярных участках волокон. На основе столь бедной рентгенограммы нельзя даже в принципе вьшолнить полное и независимое определение на атомном уровне структуры фибриллярного белка. Иными словами, число неизвестных (координаты атомов) в этой задаче намного превышает число уравнений, которые могут быть составлены для их определения на основе известных экспериментальных данных (положений и интенсивностей рефлексов). Волокнистая структура и нерастворимость таких белков делают практически невозможной их кристаллизацию с хорошей трехмерной упорядоченностью. Поэтому с помощью анализа рентгенограмм фибриллярных белков можно преследовать лишь ограниченную цель идентификации типа регулярных структур пептидного скелета и возможного способа его аранжировки. Сначала создается ориентировочная модель, причем только регулярной части белка, рассчитьшается картина рентгеновской дифракции этой модели, которая затем сопоставляется с наблюдаемой рентгенограммой. Путем изменения модели добиваются наиболее полного совпадения теоретической и экспериментальной дифракционных картин. Но и такая задача далеко не всегда решается однозначно. Поэтому при рентгеноструктурном анализе фибриллярных белков большое значение имеют дополнительные данные о структуре, полученные иным образом, с помощью привлечения спектральных методов, структурных параметров родственных молекул, информации о плотности, механических свойствах и т.д. Расчет дифракционной картины, соответствующей предполагаемому спиральному строению фибриллярного белка, выполняется на основе теории интерференции рентгеновских лучей спиральными структурами, разработанной Кокраном и Криком [77]. Обзор методов рентгеноструктурного исследования фибриллярных белков содержится в работе К. Холмса и Д. Блоу [174]. [c.42]

    Недавние исследования динамики молекулы лизоцима с помощью кристаллографических методов показали [55, 56], что атомные смещения в белке наиболее выражены в области активного центра фермента. Хотя эти исследования иока носят лишь постановочный характер, не исключено, что в будущем применение рентгеноструктурного анализа именно для изучения динамических свойств молекул белка (определение средних амплитуд смещения каждого атома от его усреднеппой позиции в кристалле), помимо зарекомендовавших себя исследований статических свойств белковых молекул в кристалле (оиределение усредненных координат всех атомов в молекуле на основе соответствующего распределения электронных плотностей), может дать важную и принципиально новую информацию о структуре ферментов н механизмах их действия. Далее, обещающими являются новые возможности прямого рентгеиоструктурного анализа промежуточных состояний в ферментативном катализе путем охлаждения кристаллов фер-мент-субстратного комплекса в подходящих водноорганических растворителях и определепия структуры образующихся молекулярных комплексов непосредственно в ходе реакции [57, 58]. Этот [c.158]

    Точность результатов рентгеноструктурного анализа с МАД, как и МИЗ, очевидно, будет тем выше, чем совершеннее изоморфизм у производных белка с резонансными центрами в первом случае и тяжелыми атомами во втором. Ситуация в этом отношении более предпочтительна при аномальном рассеянии, поскольку здесь все необходимые для установления трехмерной структуры белковой молекулы данные можно получить при облучении несколькими дл1шами волн одного кристалла. Для реализации такого преимущества был необходим метод, который гарантировал бы сведение к минимуму вероятности нарушения изоморфизма при использовании in situ резонансных меток, был бы достаточно прост и мог бы применяться в рентгеноструктурном анализе любых белков. Весьма близок к удовлетворению этих требований метод приготовления селенометиониновых белковых препаратов, дающих аномальное рассеяние, который разработали Хендриксон и соавт. [559]. [c.160]

    Для объяснения этих фактов активный центр химотрипсина представляют обычно (в развитие идей школы Нимэнна [55, 64]) состоящим из участков, комплементарных по отношению к отдельным фрагментам молекулы специфического субстрата [7, 59, 65]. Движущая сила сорбции фрагмента К на ферменте — это гидрофобное взаимодействие. Фактически образование комплекса фермент — субстрат обусловлено тем, что боковая гидрофобная субстратная группа подвергается термодинамически выгодной экстракции из воды в органическую среду белка (см. 4—6 этой главы). Молекулярная модель активного центра была предложена Блоу с сотр. [66] на основании результатов рентгеноструктурного анализа кристаллического химотрипсина (см. рис. 9). Размеры гидрофобной полости в районе активного центра составляют (10—12) х(5,5—6,5)Х(3,5—4) А. Эти размеры достаточны, чтобы вместить боковую цепь триптофана или тирозина, но вместе с тем форма полости делает возможной только лишь одну, строго определенную ориентацию плоскости ароматического кольца. [c.134]

    Успехи в изучении етруктуры белков, н в частности лизоцима, в кристаллическом состоянии методами рентгеноструктурного анализа неизбежно повлекли за собой вопрос о том, насколько третичная структура фермента, и в особенности его активно1 о це1гтра, в кристалле близка к таковой в растворе. С одной стороны, можно было бы ожидать близкое сходство, если не идентичность, между структурами фермента в данных двух физических состояниях, поскольку по меньшей мере одна треть объема для большинства кристаллических белков занята водой [35], причем по данным ЯМР эта вода имеет жидкую структуру [36]. С другой стороны, определенные ограничения в подвижности фермента в кристалле, а также взаимные стерические влияния молекулы в кристаллической решетке (возможно, различные для разных полиморфных модификаций кристаллического фермента) могут, вообще говоря, сказываться на топографии активного центра, доступности его по отношению к молекулам субстрата и эффекторов и в целом на механизме ферментативного катализа. [c.155]

    Рентгеноструктурный анализ низкого разрешения (6 А) показал, что трехвалентный гадолиний связывается в активном центре лизоцима между участками D и Е и блокирует обе каталитические группы фермента — карбоксильные группы остатков Asp 52 и Glu 35 [2]. Улучшение разрешения (до 2,5 А) показало, что в активном центре лизоцима имеются два участка связывания Gd (П1), которые отстоят друг от друга на 3,6 А [33] и находятся в непосредственной близости от каждой из указанных карбоксильных групп, причем с одной молекулой фермента связывается только один катион металла (связанный с одной из двух карбоксильных гру[ш или быстро обменивающийся между ними) [33]. Это согласуется с данными по лизоциму в растворе, где стехиометрия связывания фермента с Gd (П1) равна 1 1 [33, 46]. Тот факт, что Gd (HI) ингибирует активность лизоцима в растворе, также согласуется с данными рентгеноструктурного анализа [33]. Наконец, то, что локализация Gd (III), связанного в активном центре лизоцима, почти одинакова для тетрагонального и три-клиниого фермента [33], свидетельствует о сходстве третичной структуры белков в этих двух полиморфных состояниях, несмот- [c.157]

    М. кашалота был первым белком, для к-рого Дж. Кендрю с сотрудниками в 1957-60 определили пространств, структуру молекулы методом рентгеноструктурного анализа. [c.92]

    Использование рентгеноструктурного анализа позволяет конструировать пространственные модели молекулы белка. Было найдено, что атомы амидной группы ONH , образующие скелет молекулы, лежат почти в одной плоскости и имеют транс-конфигурацию [c.531]

    Наиболее тщательно изучена структура низкомолекулярной тРНК. Во всех этих молекулах существуют двухцепочечные участки, стабилизированные водородными связями с образованием трех шпилек, к которым иногда добавляется четвертая. ( клеверный лист ). Структура одной из тРНК установлена методом рентгеноструктурного анализа [72—74] (рис. 2-24). Нерегулярность и сложность формы молекулы ставит ее в один ряд с молекулами глобулярных белков. Обратите внимание на расположенный в нижней части рисунка антикодон (триплет оснований), структура которого обеспечивает спаривание с тремя основаниями кодона, детерминирующего определенную аминокислоту, в данном случае фенилаланин. [c.134]

    Молекула тропонина состоит из трех полипептидных цепей с мол. массами от 18 000 до 37 000 дальтон. Один полипептид (Т) прочно связывает тропонин с тропомиозииом в участке, расположенном приблизительно на одной трети расстояния от С- до N-конца, со стороны С-конца. Второй полипептид (I), входящий в состав тропонина, взаимодействует с актином в отсутствие ионов Са + и работает вместе с остальными двумя полипептидами, удерживая тропомиозин в таком положении, в котором он ингибирует гидролиз АТР. Когда третий полипептид (С-субъединица) присоединяет ионы кальция, то ингибирование прекращается и может начаться сокращение. Однако общая картина функционирования всей этой машины остается непонятной. По данным рентгеноструктурного анализа и электронной микроскопии [93, 94], при связывании кальция с тропонином тропомиозин отклоняется от S1 примерно на 20°, открывая активный центр для взаимодействия миозин — АТР—актин (рис. 4-24). Возможно, тропомиозин катится наподобие ролика вдоль поверхности актина, открывая центры одновременно в семи молекулах актина Если это действительно так, то какого рода мотор используется при этом и что не позволяет ролику упасть с актина Обо всем этом мы может только догадываться. Вполне возможно, что боковые цепи отдельных аминокислотных остатков тропомиозина, выступающие наподобие зубцов на субмикроскопической шестеренке, входят в комплементарные углубления актина. Тогда возникает вопрос почему связывание иона кальция с тропомиозииом приводит к тому, что тропомиозии начинает катиться , как ролик, по актину Мы знаем, что присоединение металлов к белкам может приводить к очень сильным конформационным изменениям (разд. В.8.в). Не исключено, что конформационное изменение С-субъединицы тропонина [c.325]

    Положение о том, что понимание химических и физических свойств белков требует знания пространственного строения молекул, впервые, по-видимому, было высказано К. Мейером и Г. Марком в 1930 г. Более того, они предприняли попытку установить прямую связь между некоторыми физическими свойствами белков и пространственной структурой, подобно тому, как это уже делалось в химии при определении зависимости между химическими свойствами и строением молекул. В частности, они предположили наличие непосредственной связи механического состояния специально приготовленных белковых препаратов при растяжении и сжатии с изменением молекулярной формы полипептидных цепей. Первыми объектами исследования пространственного строения с помощью рентгеноструктурного анализа стали фибриллярные белки, содержащие наряду с аморфной также упорядоченную часть, представляющую собой нечто вроде одномерного линейного кристалла Г. Герцог и У. Янеке, а позднее Р. Брилл получили в самом начале 1920-х годов рентгенограммы фиброина Шелка. Их интерпретация основывалась на предположении дикетопи-перазинового строения белка, что многими химиками было воспринято как [c.67]

    В 1950 г. публикуется исследование Л. Брэгга, Дж. Кендрью и М. Пе-рутца, в котором сообщаются не только вновь полученные авторами данные рентгеноструктурного анализа миоглобина и гемоглобина, но анализируется сложившаяся в кристаллографии белков общая ситуация. Авторы подводят итог предшествующим исследованиям в этой области и в заключении формулируют важную гипотезу о родственном пространственном строении белков, которая представляет собой дальнейшее, подкрепленное новыми наблюдениями развитие взглядов Астбэри и Хаггинса на структурное единство белковых молекул. [c.70]

    При поиске решения структурной проблемы белка особенно вдохновляющими примерами явились результаты теоретических исследований Л. Полинга и Р. Кори регулярных структур полипептидов [53] и Дж. Уотсона и Ф. Крика двойной спирали ДНК [54]. В этих работах с помощью простейшего варианта конформационного анализа - проволочных моделей, получивших позднее название моделей Кендрью-Уотсона, а также ряда экспериментальных данных, прежде всего результатов рентгеноструктурного анализа волокон (в случае ДНК еще и специфических соотношений оснований Э. Чаргаффа), удалось предсказать наиболее выгодные пространственные структуры полимеров. Собственно, предсказана была как в случае пептидов, так и нуклеиновых кислот, геометрия лишь одного звена, которое в силу регулярности обоих полимеров явилось трансляционным элементом. Белок же - гетерогенная аминокислотная последовательность, и поэтому таким путем предсказать его трехмерную структуру нельзя. Но то обстоятельство, что простейший, почти качественный, конформационный анализ привел к количественно правильным геометрическим параметрам низкоэнергетических форм звеньев, повторяющихся в гомополипептидах и ДНК, указывало на большие потенциальные возможности классического подхода и его механической модели в описании пространственного строения молекул. [c.108]

    Реальность расчета пространственного строения олигопептидов, казалось бы, легко может быть выяснена прямым сопоставлением теоретических результатов с опытными данными. Однако эта обычно столь простая процедура в данном случае чаще всего оказывается невыполнимой по ряду причин принципиального и препаративного характера. Кроме Того, из-за недостаточной чувствительности и некоторых других ограничений, присущих известным экспериментальным структурным методам, сопоставление теории и опыта во многих случаях не имеет того решаю- Цего значения, которое ему придается традиционно. Начнем с рассмот- ния возможностей рентгеноструктурного анализа олигопептидов. В изучении пространственного строения низкомолекулярных пептидов применимость этого метода более ограничена даже по сравнению с белками. Оли-ГОпептиды обладают повышенной конформационной лабильностью, и получение их в кристаллической форме является трудноразрешимой задачей. Но даже если удается вырастить пригодные для рентгенострук-I Horo анализа кристаллы и получить дифракционную картину, возника-ter серьезные осложнения с ее интерпретацией. Для расшифровки рентгенограммы нельзя, например, воспользоваться-методом изоморфного замещения, поскольку внедрение тяжелых атомов в образующие кристал-Яическую решетку олигопептидные молекулы искажает их строение, т.е. данном случае в отличие от белков метод не является действительно Изоморфным. В то же время олигопептиды слишком сложны для использо- [c.283]


Смотреть страницы где упоминается термин Рентгеноструктурный анализ, молекулы белка: [c.267]    [c.855]    [c.206]    [c.43]    [c.385]    [c.234]    [c.345]    [c.23]    [c.99]    [c.407]    [c.544]    [c.75]   
Химия природных соединений (1960) -- [ c.531 , c.532 , c.536 , c.538 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ рентгеноструктурный

Молекулы белка

Рентгеноструктурный анализ белко

Рентгеноструктурный анализ, молекулы



© 2025 chem21.info Реклама на сайте