Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Клеточная организация тканей

    Развитие многоклеточных эукариотических организмов основано на способности клеток передавать в ряду поколений активное или, наоборот, репрессированное состояние гена. Наследование состояния гена приводит в конечном итоге к образованию дифференцированной ткани, состоящей из клеток, в которых лишь небольшая часть генов активирована на фоне репрессии основной части генома. Исследование молекулярных механизмов, обеспечивающих наследование активного или неактивного состояния гена в ряду клеточных поколений, представляется чрезвычайно важным. По-видимому, в основе этих механизмов лежат не только программированные взаимодействия белков и ДНК, обеспечивающие наследуемую локальную организацию хроматина, но и процессы метилирования ДНК. Метилирование можно расс.матривать как особый механизм контроля транскрипции, существующий наряду с механизмами, основанными на взаимодействиях между цис-действую-щими регуляторными элементами и факторами транскрипции. [c.218]


    Позиционные значения, приобретаемые клетками в процессе пространственной организации зародыша, выражаются адгезионными свойствами их поверхности, а также их внутренним химизмом. Клетки одного тит стремятся взаимодействовать между собой и отделяются от иных, отличающихся от них клеток таким образом происходит стабилизация пространственной организации и обеспечивается способность клеток к спонтанной сортировке при их искусственном смешивании. Изменение характера адгезионных свойств лежит в основе морфогенетических процессов, таких, как гаструляция, нейруляция и формирование сомитов. Поскольку характер позиционных значений данного класса клеток проявляется через изменение свойств клеточной поверхности, он может управлять миграцией других популяций эмбриональных клеток в процессе сборки сложных тканей или органов. Вероятно, у позвоночных клетки соединительной ткани являются первичными носителями позиционной информации. Клетки соединительной ткани дермального слоя кожи способны контролировать региональную специализацию эпидермиса, формирующего перья и чешуи. Сходным образом клетки соединительной ткани конечности контролируют и координируют образование структур, формируемых популяциями мигрирующих клеток, к числу которых относятся мышечные клетки (производные сомитов), аксоны нервных клеток (от центральной нервной системы и периферических ганглиев) и пигментные клетки (производные нервного гребня). Несмотря на то что к настоящему времени идентифицированы многие молекулы клеточной адгезии общего назначения, а также показано, что некоторые из них выполняют в этих процессах центральную роль, молекулярные механизмы, направляющие миграцию клеток по определенным маршрутам к строго определенным местам назначения в конечностях, до сих пор неизвестны. [c.142]

    До сих пор при обсуждении механизмов формирования пространственной организации и позиционных значений мы пренебрегали одним важным аспектом этого процесса мы не обсуждали регуляцию роста, которая исключительно важна для приобретения различными частями и органами зародыша соответствующих размеров. В некоторых случаях эти механизмы основаны на автономных клеточных программах, запускаемых на ранних стадиях закладки зачатков определенных органов. Однако во многих других случаях рост и структура позиционных значений определяются как результат постоянных межклеточных взаимодействий и тесно связаны с ними. Изучая процессы регуляции, происходящие у многих организмов при замене фрагментов ткани, обладающих различными позиционными значениями, исследователи обнаружили, что клетки этих фрагментов растут и приспосабливаются к локальным условиям. Из этих экспериментов следует простое правило общего характера. Его лучшей иллюстрацией являются результаты исследований по регенерации конечностей у тараканов. [c.106]


    У большинства лекарственных препаратов существует тесная взаимосвязь между пространственно-структурной организацией молекул и фармакологическим действием. Многие лекарственные препараты, полученные искусственным синтезом, существуют в виде смеси двух, а часто и большего числа пространственных изомеров, различающихся по биохимической активности. Последствия таких различий не всегда безопасны для организма. Распознавание стереоизомеров вводимого в организм лекарственного соединения может осуществляться на различных стадиях при связывании с активными центрами ферментов и рецепторов, при транспорте через клеточные мембраны, в процессах поглощения в клетках и распределения между тканями. Все вышеперечисленные процессы — предмет изучения фармакокинетики и фармакодинамики. Выявление фармакокинетических и фармакодинамических особенностей отдельных стереоизомеров открывает перспективные направления совершенствования уже известных лекарственных препаратов. Необходимо отметить, что в настоящее время лишь 15 % синтетических препаратов, находящихся на европейских рынках, производится в форме отдельных изомеров, остальные 85 % представляют собой смеси изомеров. [c.508]

    Нарушение клеточной организации тканей [c.7]

    Структур органелл и крупные молекулы можно изучать под микроскопом для локализации специфических молекул в клетке разработаны эффективные методы окрашивания. Однако, чтобы разобраться в молекулярных основах клеточной организации, необходим детальный биохимический анализ. К сожалению, биохимические методы предполагают использование значительного количества клеток и в процессе исследования клетки разрушаются. Если в качестве образца для биохимического анализа использовать кусочек ткани, то после разрушения будет получена смесь фрагментов различных клеток. И если ткань образована клетками разного типа, что скорее является правилом, чем исключением, то разобраться в этой смеси будет просто невозможно. Пытаясь извлечь максимум информации о всех клетках, составляющих ткани, клеточные биологи разработали методы разделения тканей на клетки и методы выделения отдельных типов клеток. Полученную относительно гомогенную популяцию клеток можно подвергать анализу непосредственно либо предварительно размножив их путем культивирования. [c.201]

    Поскольку цитоскелет способен упорядочивать секретируемые клеткой макромолекулы матрикса, а они в свою очередь способны организовывать цитоскелет соприкасающихся с ними клеток, ясно, что внеклеточный матрикс может в принципе распространять упорядоченную организацию от клетки к клетке (рис. 12-71). Благодаря этому свойству он мог бы играть центральную роль в создании и поддержании клеточных паттернов тканей и органов в процессе индивидуального развития взаимодействие между внеклеточным матриксом и клетками при этом могло бы осуществляться через посредство макромолекул матрикса, связанных с клеточной поверхностью. [c.241]

    Образование комплексов фермент—субстрат и гормон—рецептор предполагает узнавание молекулами друг друга. На более высоком уровне организации такой способностью обладают клетки. Так, лейкоциты в токе крови узнают и разрушают чужеродные клетки, например бактериальные, но не нападают на собственные клетки крови. Узнавание проявляется и в контактном ингибировании некоторые клетки высших организмов (например, клетки мышечной ткани) в питательной среде продолжают делиться до тех пор, пока не придут в контакт с другими клетками, после чего их рост прекращается. Раковые клетки в тех же условиях продолжают делиться. В этих двух примерах клеточного узнавания, имею- щего важное значение в медицине, участвуют поверхностные антигены. Уникальность специфических типов клеток указывает на большое разнообразие их поверхностных антигенов, что дополнительно усложняет строение биологических мембран. Процессы клеточного узнавания зависят от подвижности компонентов мембраны, которая, по-видимому, регулируется с помощью микротрубочек, имеющихся в цитоплазме [4]. [c.108]

    Кардиолипин впервые был выделен из ткани сердечной мышцы. Установлено, что он локализован почти исключительно в митохондриях и играет важную роль в структурной организации и функционировании дыхательных комплексов. Кардиолипин является также обязательным компонентом бактериальных клеточных мембран и хлоропластов растений. [c.296]

    Из всех способов взаимосвязи клеток в тканях многоклеточных животных наиболее фундаментальное значение, видимо, имеет эпителиальная организация. В эволюции сложных многоклеточных организмов эпителиальный слой сыграл столь же большую роль, как и клеточная мембрана в эволюции сложных одиночных клеток. [c.44]

    Установление факта клеточного строения нервной системы еще не означало раскрытия механизмов ее функции. Этот факт мог служить лишь отправной точкой. Как следует из второй половины данного нами определения нейробиологии, задача заключается в том, чтобы понять, как нервные клетки организуются в функциональные системы. Обратимся снова к рис. 1.2 и сравним организацию клеток в других тканях организма. Для железистых органов, например печени, основными функциями должны быть метаболическая и секреторная активность отдельных клеток пространственное расположение клеток таких органов важно только с точки зрения транспорта веществ между клетками и кровью. В других же тканях, например коже, мышцах и кости, на первый план выступают механические факторы, а в таких органах, как легкие или почка, комбинируются метаболические и механические функции. [c.29]


    Иерархическая биотическая структура экосистемы включает организмы разного уровня развития одноклеточные либо многоклеточные, которые состоят из клеток, формирующих у многоклеточных отдельные органы и ткани. Нижний уровень организации представлен клеточными органеллами (ядро, митохондрии, рибосомы и др.), состоящими из сложных молекул, природных органических соединений (белки, нуклеиновые кислоты, углеводы, липиды и др.). [c.18]

    Хотя ДНК во всех клетках организма одинакова, ясно, что ее тонкая организация (структурные видоизменения, например метилирование) и процессы ее репарации, от которых, возможно, зависит предрасположение того или иного органа к канцерогенезу, могли бы быть различными в клеточных популяциях разных тканей. [c.80]

    Как показано на рис. 2.3, метаболические пути можно исследовать на разных уровнях организации, которые удобно разделить на две главные группы 1) на уровне органов и тканей — в этом случае можно следить за поступающими в ткань субстратами и уходящими из нее метаболитами и описать ход их превращений 2) на субклеточном уровне—каждая клеточная органелла (например, митохондрия), каждый компартмент (например, цитозоль) выполняют специфическую биохимическую роль в рамках общей системы внутриклеточного метаболизма. [c.168]

    Л. широко используют в качестве модельных систем при изучении принципов мол. организации и механизмов функционирования биол. мембраи. Они пригодны для изучения пассивного транспорта ионов н малых молекул через липидный бислой. Изменяя состав липидов в Л., можно направленно менять св-ва мембран. Включением мембранных белков в липидный бислой получают т. наз. п р о т е о-липосомы, к-рые используют для моделирювания разнообразных ферментативных, транспортных и рецепторных ф-ций клеточных мембран. Л. используют также в иммунологич. исследованиях, вводя в них разл. антигены или ковалентно присоединяя к Л. антитела. Они представляют собой удобную модель для изучения действия на мембраны мн. лек. ср-в и др. биологически активных в-в. Во виутр. водный объем Л. (в т. ч. полимерных) можно включать лекарства, пептиды, белки и нуклеиновые к-ты, что создает возможность практич. примеиеиия Л. в качестве ср-ва доставки разных в-в в определенные органы н ткани. [c.604]

    На тонких срезах многих биологических объектов наблюдаются системы рядов, образованных стопками параллельных арок (рис. 11 и 12). Эти серии дугообразных линий особенно ясно видны в тонких срезах наружных покровов ракообразных. Мы можем, например, для этих целей воспользоваться панцирем краба Сагстиз таепаз). Он состоит из органической матрицы, построенной в основном из белков и хитина — линейного полимера аце-тилглюкозамина — и минералов (главным образом кальцита). Органическую матрицу можно исследовать либо после удаления минеральной части (растворение кальцита в кислоте, ЭДТА и т. д.), либо до наступления минерализации — сразу же после одной из линек, многократно повторяющихся на протяжении жизни этих животных. Арочная структура часто видна и в оптическом микроскопе, но гораздо лучше разрешается с помощью классического просвечивающего электронного микроскопа [70]. Много удивительно похожих черт арочной конфигурации мы находим в самых различных биологических материалах, весьма далеких от покровов ракообразных. Так, аналогичной структурой обладает панцирь насекомых. Во многих местах срезов костных тканей наблюдаются арочные построения. Многие другие оболочки, различные соединительные ткани и клеточные стенки некоторых растений обнаруживают сходную арочную организацию (см. литературу к статье [c.290]

    Молочная железа хорошо изучена в связи с гормональной регуляцией деления и дифференцировки ее клеток. Образование молока должно начинаться, когда рождается ребенок, и прекращаться, когда ребенка отнимают от груди. В молочной железе, в которой не образуется молоко и не происходит подготовки к его секреции, железистая ткань состоит из разветвленных систем выводных протоков, погруженных в соединительную ткань и выстланных в секреторных участках одним споем сравнительно неактивных эпителиальных клеток, среди которых встречаются и миоэпителиальные. На первом этапе подготовки к интенсивной выработке молока гормоны, циркулирующие в крови в период беременности, стимулируют здесь клеточную пролиферацию концевые отделы протоков растут и ветвятся, образуя небольшие рас-ширения-адьвеолы (рис. 16-28). Клетки, выстилающие альвеолы (рис. 16-29), являются секреторными, ио они не начинают выделять молоко (рис. 16-30), пока ие получат стимул в виде измененного набора гормонов в крови матерт после рождения ребенка. Когда ребенка отнимают от груди н кормление пре-гфащается, секреторные клетки дегенерируют, макрофаги уничтожают их остатки, большая часть альвеол исчезает и железа переходит в состояние покоя до тех пор, пока новая беременность не запустит опять весь цикл. Таким образом, молочная железа сильно отличается от эпидермиса способом регуляции и периодичностью обновления клеток, а также пространственной организацией этого процесса. [c.158]

    Каждый из нас легко отличит растение от зверя или птицы. Обычно нетрудно даже решить, какому организму-растительному или животному-принадлежит отдельная клетка, хотя здесь могут быть и проблематичные случаи. Но по мере более глубокого проникновения внутрь клетки, при исследовании ее цитоплазмы, органелл и, наконец, индивидуальных химических компонентов на первый план начинают выступать уже Не различия, а черты сходства между двумя царствами живой природы. Лишь с помошью весьма тонких методов можно отличить растительные митохондрии, ядра и рибосомы от соответствующих животных органелл, а многие компоненты растительных и животных клеток, такие, например, как микротрубочки, практически неразличимы. Специфика растительной и животной жизни проявляется не в таких фундаментальных особенностях молекулярной организации живого, как репликация ДНК, биосинтез белков, процессы фосфорилирования в митохондриях нли конструкция клеточных мембран,-скорее оиа связана с более спе-циажзированкыми функциями клеток и тканей Большая часть различий между обоими царствами возникла в ходе эволюционной дивергенции, для которой отправными точками послужили два фундаментальных события приобретение способности связывать углекислоту в процессе фотосинтеза (см. гл. 9) и появление жесткой клеточной стенки у предков современных растений. Отдаленные последствия второго из указанных событий и будут предметом обсуждения в этой главе. [c.160]

    Интерес к биосинтезу и генетическому контролю над ДНК, РНК и белком объясняется тем, что эти соединения играют решающую роль в развитии всего живого, организации клеточной структуры и явлениях наследственности и воспроизведения. Еще Ф. Мишер много лет назад (1870 г.), изучая состав молоки рейнского лосося во время нереста, установил, что лосось синтезирует нуклеиновые кислоты из веществ, входящих в состав его тканей. Лосось, направляясь из моря вверх по течению на нерест, не принимает пищи. Длительное время рыба голодает и при этом расходует главным образом белки своих мышц, за исключением сердечной и плавниковых мышц. Между тем в период его движения одновременно и интенсивно идут два процесса — распад белка и синтез большого количества нуклеиновых кислот сперматозоиды, как известно, состоят почти из одних нуклеопротеидов. Для синтеза необходим ряд веществ, главным образом производные пурина и пиримидина, пентоза (рибоза и дезоксирибоза) и фосфорная кислота. [c.298]

Рис. 11-77. Электронная микрофотография промежуточных филаментов двух гипов, встречающихся в нервной ткани ( препарат после быстрого замораживания и глубокого травления). А. Нейрофиламенты в аксоне соединены многочисленными поперечными белковыми сшивками как полагают, такая организация придает этому длинному клеточному отростку большую прочность на разрыв. По-видимому, сшивки образованы длинными неспиральными участками С-концевой части наиболее крупного белка пейрофиламентов (см. рис. 11-74). Б. Промежуточные филаменты (называемые глиальными филаментами) в астроците. Они подвергаются меньшим механическим нагрузкам. Их поверхность довольно гладкая, и Рис. 11-77. <a href="/info/73091">Электронная микрофотография</a> <a href="/info/510439">промежуточных филаментов</a> <a href="/info/1696521">двух</a> гипов, встречающихся в <a href="/info/188178">нервной ткани</a> ( препарат после <a href="/info/509126">быстрого замораживания</a> и <a href="/info/509307">глубокого травления</a>). А. Нейрофиламенты в аксоне соединены многочисленными поперечными белковыми сшивками как полагают, такая организация придает этому <a href="/info/1886341">длинному клеточному</a> отростку большую прочность на разрыв. По-видимому, сшивки образованы длинными неспиральными участками С-<a href="/info/916047">концевой части</a> наиболее крупного белка пейрофиламентов (см. рис. 11-74). Б. <a href="/info/510439">Промежуточные филаменты</a> (называемые <a href="/info/1413072">глиальными филаментами</a>) в астроците. Они подвергаются меньшим <a href="/info/161829">механическим нагрузкам</a>. Их поверхность довольно гладкая, и
    Каковы пространственные отношения эпителиальных и соединительных тканей в организме Эпителиальные клеточные пласты выстилают все полости и свободные поверхности тела, и благодаря снециализироваппым соедипепиям между клетками эти пласты могут служить барьерами для передвижения воды, растворов и клеток из одного компартмента организма в другой. Как показано на рис. 14-1, эпителии почти всегда располагаются на подложке из соединительной ткани, которая может связывать их с другими тканями (например, мышечной), не имеющими явно выраженной эпителиальной или соединительнотканной организации. [c.474]

    Созданный коллективом известных американских ученых (в их числе - лауреат Нобелевской премии Джеймс Уотсон) современный учебник молекулярной биологии. Энциклопедическая полнота охвата материала позволяет использовать его как справочное пособие. На русском языке выходит в 3-х томах. Читатель уже знаком с 1-м изданием (М. Мир, 1986-1987). Новое издание переработано авторами и дополнено современным материалом. В т. 3 рассматриваются проблемы клеточной дифференцировки и организации снециализированных тканей анализируются общебиологические и молекулярно-генетические аспекты злокачественного перерождения клеток. [c.4]

    Перейдем теперь от клеточных популяций, обновляющихся путем простого удвоения своих клеток, к таким, которые обновляются за счет стволовых клеток. Эти популяции сильно различаются не только по свойствам самих клеток и скорости их замещения, но и по пространственной организации этого процесса. Папример, в выстилке тонкого кишечника клетки образуют однослойный эпителий Этот эпителий покрывает поверхность ворсинок, выступающих в просвет кишки, и он же выстилает глубокие крипты, уходящие в толщу подлежащей соединительной ткани (рис. 17-17). Стволовые клетки находятся в защищенном месте в глубине крипт. Дифференгщрованные клетки, образующиеся из стволовых, выносятся в результате скольжения их в плоскости эпителиального слоя наверх, пока не достигнут открытой поверхности ворсинок, с кончиков которых они в конце концов слущиваются. Примером совсем иного процесса может служить кожа эпидермис представляет собой многослойный эпителий, и дифференцирующиеся клетки перемещаются от места их образования в направлении, перпендикулярном плоскости клеточных слоев. В кроветворных тканях пространственная картина образования клеток сложна и выглядш хаотичной. Но прежде чем углубляться в дальнейшие подробности, посмотрим, что представляет собой стволовая клетка. [c.168]

    В облученном организме одновременно развивается множество противоположно направленных процессов поражения и восстановления, осуществляемых на разных уровнях. Пострадиационное восстановление протекает в разных тканях с неодинаковой скоростью наиболее интенсивно репарация происходит в активно пролиферирующих тканях, некоторая доля повреждений остается необратимой. В организме репарация осуществляется также и на клеточном уровне. Поэтому для выяснения вопросов, связанных с механизмами пострадиационного восстановления организмов, проводят цитокинетические и функциональные исследования органов, играющих ведущую роль в развитии и исходе лучевых синдромов, а также определяют соотношения процессов деструкции и восстановления на различных уровнях организации биологических систем. [c.169]

    Представления о физико-химическом механизме кислородного эффекта наиболее тщательно разработаны в связи с исследованиями, проводящимися на молекулярном уровне. Полученные выводы часто используются авторами для объяснения механизма кислородного эффекта на клеточном и организменном уровнях. Но с усложнением организации системы появляются новые факторы, активно влияющие на чисто физико-химические процессы. Так, многие радиобиологи, анализируя кривую Грэя, приходили к ошибочному выводу о непосредственной зависимости между содержанием кислорода в среде (например, в атмосфере воздуха) и радиочувствительностью биологических объектов. Предполагалось, что кислород беспрепятственно дифундирует в клетку и его концентрация в ней равна содержанию кислорода в окружающей среде. Однако в настоящее время хорошо известно, что любой животной клетке присущ градиент кислорода и его стационарное состояние в клетках и тканях существенно отличается от содержания кислорода во внешней среде. Содержание кислорода в клетках может сильно варьировать от густоты клеточных суспензий известна также роль биомембран в регуляции транспорта кислорода кроме того, концентрация кислорода определяется не только его поступлением, но и потреблением в клетках. При изучении гипоксии у млекопитающих необходимо изучать также комплекс факторов, определяющих уровень кислорода в клетках, объем и скорость кровотока, артериально-венозную разницу, температуру тела, кровоснабжение разных органов, характер потребления кислорода и т. д. [c.263]

    В учебнике дается исторический обзор развития биофизики. Излагается физическая сущность структурных основ организации и функционирования биообъектов на субмолекулярном, молекулярном, клеточном, тканевом уровнях и иа уровне целого организма. Большое внимание уделено молекулярным механизмам сопряжения механических, электрических и энергетических процессов в клетках и тканях, механизмам нервного проведения, мышечного сокращения, кровообращения и др. Обсуждаются вопросы моделирования биофизических процессов, дается подробный анализ применения достижений биофизики в медицине. [c.2]

    Наиболее простая форма организации — диффузная инфильтрация клетками соединительной ткани, распсшоженной ниже слизистых покровов пищеварительной и дыхательной систем, а также в подкожной соединительной ткани (гиподерме). Эти скопления лимфоцитов нельзя классифицировать как тканевые образования в силу непостоянства места локализации, количественного и качественного состава клеток. К истинно лимфоидным тканевым образованиям следует относить скопления лимфоцитов, собранных в узелки (миндалины, пейеровы блящ-ки). Основным признаком тканевой (но не органной) организации лимфоцитов является отсутствие соединительнотканной капсулы. Скопления лимфоцитов, объединенные в единую морфологическую единицу соединительнотканной капсулой и обладающие тфриториальной структурированностью по основным клеточным типам (Т-зоны, В-зоны, кора, медулла), можно классифицировать как органы лимфоидной системы [c.155]

    Гистологическая картина образования активных антителопродуцентов. Одной из характерных черт организации лимфоидной ткани является наличие так называемых центров размножения, которые представляют собой место пролиферации, трансформации и селекции В-клеточных клонов (рис. 9.21). В-Лимфоциты, активированные хелперными Т-клетками в тимусзависимой зоне лимфоидной ткани либо сразу дифференцируются в плазматические клетки, продуцирующие ранние, суммарно низкоаффинные антитела, либо перемещаются в первичные фолликулы и образуют там центры размножения. Здесь они, во-первых, подвергаются селекции на наличие высокоаффинных антигенраспознающих иммуноглобулиновых рецепторов и, во-вторых, завершают дифференцировку в плазмоциты, продуцирующие высокоаффинные антитела. Часть В-клеток с высокоаффинными рецепторами трансформируется в клетки памяти. [c.251]

    Вся имеющаяся информация о внутриклеточных функциях показывает, что каждому химическому соединению в клетке присуща своя изначальная функция, хотя бы самая простая и малозаметная. Примером может служить аденин. Он функционирует и как самостоятельная молекула, и в составе макромолекул. Показано, что для роста ткани сердцевины стебля табака нужен, наряду с ауксином, также и аденин (Skoog, Armstrong, 1970). Только после его добавления начинается быстрое клеточное деление, инициируемое взаимодействием адени-на с ауксином. В то же время основная функция аденина заключается в том, что он участвует в процессах передачи генетической информации в составе ДНК и РНК. Это пример небольшой молекулы, выполняющей в клетке две совершенно различные функции на двух разных уровнях молекулярной организации 1) эта молекула индуцирует клеточное деление и 2) действует как часть генетического материала. С уровнем меняется и функция, но имеется она на каждом уровне. [c.179]

    По сравнению с огромным разнообразием форм беспозвоночных организация позвоночных по общему плану довольно единообразна и все они принадлежат к одному типу хордовых. Хотя эволюционное древо позвоночных имеет многочисленные уровни и ветви, в том числе бесчелюстных, хрящевых рыб. костных рыб. амфибий, рептилий, птиц и млекопитающих, основные клеточные и молекулярные компоненты врожденного иммунитета у всех современных челюстноротых удивительно консервативны. Однако усложнению строения тела соответствует возрастание специализации лимфоидной ткани и функций лимфоцитов, а также увеличение разнообразия классов иммуноглобулинов. Самой сложной по структуре и функциям иммунной системой обладают млекопитающие. [c.285]

    В Отделе исследуется структурно-функциональная организация генома эукариот на примере модельного объекта - плодовой мушки Drosophila melanogaster. Огромная роль этого объекта в расшифровке механизмов функционирования более сложных геномов, включая геном человека, хорошо известна. Работы на дрозофиле заложили основу для развития работ на позвоночных, включая человека, по следующим основным направлениям молекулярной генетики молекулярный анализ генетики развития организма исследование рецепции сигналов окружающей среды роль структуры хроматина в клеточной дифференцировке. Успехи в исследовании геномов позвоночных, основанные на работах, выполненных на дрозофиле, стали стимулом для организации проекта секвенирования генома D. melanogaster, который в значительной степени был завершен в 2000 г. Доступный банк данных нуклеотидных последовательностей предоставил богатейший материал для выяснения функций генов, которые до сих пор не были идентифицированы, а также для анализа этой информации с помощью компьютерных программ. Однако гены, кодирующие белки, составляют только малую часть сложных геномов многоклеточных эукариот. Одной из наиболее важных задач является выявление в не кодирующих белки последовательностях ДНК тех контролирующих элементов, которые определяют правильную экспрессию генов во времени и в отдельных тканях развивающегося организма. [c.11]


Смотреть страницы где упоминается термин Клеточная организация тканей: [c.88]    [c.136]    [c.83]    [c.159]    [c.525]    [c.179]    [c.6]    [c.156]    [c.24]    [c.225]    [c.335]    [c.335]    [c.223]    [c.6]   
Генетика человека Т.3 (1990) -- [ c.7 ]




ПОИСК





Смотрите так же термины и статьи:

Организация тканей



© 2025 chem21.info Реклама на сайте