Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ксилема дифференцировка

    Большинство клеток, образующихся в корневой меристеме, проходит три четкие стадии развития 1) деление, 2) рост или удлинение и 3) дифференцировку. Разделение этих трех этапов во времени и пространстве создает характерную архитектонику кончика корня (рис 19-52 Несмотря на некоторое перекрывание, в кончике корня сравнительно легко можно различить зону деления клеток, зону роста (зону удлинения, или растяжения, клеток) и зону клеточной дифференцировки. Часто, однако, процесс дифференцировки начинается еще тог а, когда клетка продолжает увеличиваться в размерах. После завершения дифференцировки клетки некоторых типов остаются живыми (например, клетки флоэмы), а другие отмирают (клетки сосудов ксилемы и трахеиды). [c.198]


    Сосудистый камбий первоначально располагается между первичной ксилемой и первичной флоэмой проводящих пучков его образование из апикальной меристемы показано на рис. 22.17. Он становится активным почти сразу же после завершения первичной дифференцировки клеток. На рис. 22.22 показаны ранние стадии вторичного утолщения стебля типичного деревянистого двудольного растения. [c.135]

    В формировании видового разнообразия высших растений участвует относительно небольшое число специализированных типов клеток, при образовании которых (например, сосудистых элементов двух проводящих тканей-ксилемы и флоэмы) клеточная стенка подвергается значительным изменениям Определенные участки клеточной стенки могут быть укреплены. Часто это происходит путем добавления одного или более слоев, образующих вторичную клеточную стенку. Другие участки клеточной стенки могут избирательно удаляться, как это происходит с торцевыми стенками при образовании проводящей трубки сосуда из длинного ряда цилиндрических клеток. Эти изменения клеточной стенки контролируются временными и пространственными изменениями в цитоплазме развивающихся клеток Клеточная стенка представляет собой динамическую структуру, состав и форма которой могут подвергаться заметным изменениям не только в процессе роста и дифференцировки клеток, но и после их созревания. [c.398]

Рис. 20-50. Регулярная картина утолщений клеточной стенки, создающаяся при нормальной дифференцировке клеток ксилемы (А), определяется наличием упорядоченных ансамблей кортикальных микротрубочек. В присутствии колхицина кортикальные микротрубочки деполимеризуются, и Рис. 20-50. Регулярная картина утолщений <a href="/info/98958">клеточной стенки</a>, создающаяся при <a href="/info/1385978">нормальной дифференцировке</a> клеток ксилемы (А), определяется наличием упорядоченных ансамблей <a href="/info/510005">кортикальных микротрубочек</a>. В присутствии колхицина <a href="/info/510005">кортикальные микротрубочки</a> деполимеризуются, и
    До сих пор обсуждение развития высших растений велось главным образом на уровне описания тканей и органов. Какие же изменения, происходящие на клеточном уровне, лежат в основе всех этих процессов Поскольку клетки растений лишены подвижности из-за наличия клеточных стенок, морфогенез растений должен зависеть от регулируемого деления клеток, сопряженного с ростом клеток в строго определенном направлении. Папример, большинство клеток, образуемых апикальной меристемой корня, проходит три основные фазы развития деление, рост (растяжение) и дифференцировку. Эти фи стадии, во времени и в пространстве накладывающиеся друг на друга, определяют характерное строение кончика корня. Хотя дифференцировка клетки часто начинается, когда она еще увеличивается в размерах, в кончике корня относительно несложно отличить зону деления клеток, зону их растяжения (в результате чего происходит рост корня в длину) и зону дифференцировки (рис. 20-61). После завершения дифференцировки некоторые из дифференцированных типов клеток остаются живыми (например, клетки флоэмы), а другие погибают (например, клетки ксилемы) [c.430]


    Благодаря относительно простому строению некоторые ткани растений служат удобным объектом изучения процесса дифференцировки. Слой камбия в стебле (рис. 1-12) постоянно дифференцируется с образованием флоемы из наружно расположенных клеток и ксилемы из клеток, расположенных со стороны сердцевины стебля. В то же время часть камбиальных клеток сохраняется недифференцированными. Фактически при каждом клеточном делении одна дочерняя клетка подвергается дифференцировке, тогда как другая остается малодифференцированной камбиальной клеткой. Такой способ постоянной дифференцировки стволовых клеток, сохраняющих постоянные свойства, широко распространен как у растений, так и у животных. По-видимому, направление дифференцировки камбиальных клеток зависит от химической природы сигналов, которые идут от клеток, прилегающих к камбию с наружной или внутренней стороны. Известно, что к числу факторов, индуцирующих дифференцировку, относятся сахароза, ауксин и цитокинины. [c.354]

    Вторичная дифференцировка каллусной клетки может завершиться образованием в каллусной ткани отдельных дифференцированных клеток. Они имеют определенное строение и выполняют специфические функции. Примером служит образование эпибла-стов — клеток, в которых запасаются вторичные метаболиты. Это наиболее простой тип дифференцировки каллусной клетки. Более сложная гистологическая дифференцировка завершается образованием в каллусе различных тканей млечников, волокон, трихом, элементов ксилемы (трахеи и трахеиды) и флоэмы (ситовидные трубки и клетки-спутницы). К самым сложным видам вторичной дифференцировки относятся органогенез — образование органов и соматический эмбриогенез — образование из соматических клеток эмбриоидов, биполярных зародышеподобных структур. Все эти типы дифференцировки возможны только благодаря тотипотентности любая растительная клетка содержит полный набор генов, характерный для того организма, из которого она была вьщелена. Потенциальные возможности всех клеток этого растения одинаковы каждая из них в определенных условиях может дать начало целому организму. Однако выяснено, что реально детерминируется только одна из 400—1000 клеток, что, вероятно, связано с физиологическим состоянием клетки, с ее компетентностью. Так, у эксплантов стеблевого происхождения компетентны к действию экзогенных фитогормонов и, следовательно, способны к морфогенезу только клетки эпидермальных и субэпидер-мальных тканей (Тран Тан Ван, 1981). Однако компетентность клеток может приобретаться ими в процессе культивирования [c.173]

    Ксилема-еще одна сложная ткань, которая тоже ведет начало от тонкостенных камбиальных клеток и состоит из трубчатых элементов. Она ответственна за транспорт воды и растворенных минеральных солей из корней во все остальные части растения. Главные элементы, выполняющие здесь транспортную функцию,-это сосуды и трахеиды. Образующие их трубчатые клетки имеют необычанио толстую вторичную клеточную стенку, укрепленную локальными отложениями лигнина, на долю которого приходится от 20 до 30% веса клеточной стенки (рис. 19-13). В отличие от клеток флоэмы, эти клетки отмирают, после того как их стенка окончательно сформируется. В начальный период дифференцировки ксилемы в клетках молодой растущей ткани происходит утолщение стенок за счет локальных отложений целлюлозы. Места этнх отложений определяются пучками микротрубочек, формирующихся под плазматической мембраной. Довольно часто между этими пучками лежат элементы эндоплазматического ретикулума, маркирующие те зоны клеточной стенки, которые утолщаться не будут. Утолщенные участки впоследствии будут укреплены путем отложения лигнина-практически нерастворимого полимера, относящегося к одному из классов фенольных соединений. Лигнин образует обширную плотную трехмерную сетку, армирующую клеточные стенкн, а на макроскопическом уровне получается такой хорошо знакомый нам материал, как древесина. [c.170]

    Общим признаком воздействия динитроанилинов является опухолевое перерождение кончиков корней. Клетки многоядерные, небольшого размера, в паренхиме коры гипертрофированы, имеют тонкие стенки. Процессы дифференцировки неупорядочены, ксилема чрезмерно утолщается. Динитроанилины подавляют митоз, действуя в тех фазах деления, в которых должны образоваться и функционировать микротрубочки (метафаза, анафаза, телофаза). Волокна веретена состоят из микротрубочек. При нормальном делении микротрубочки перемещают хромосомы, упорядочивая их в метафазе определенным образом, и именно на стадии метафазы динитроанилины нарушают этот процесс. По своему действию они напоминают колхицин, поскольку также препятствуют полимеризации тубулина в микротрубочки. Однако по точке приложения действия они отличаются от колхицина. Динитроанилины разрушают периферические и осевые микротрубочки клеток корня и специфически связываются с соответствующими боковыми цепями макромолекул тубулина еще до образования микротрубочек. Микротрубочки играют определенную роль в переносе веществ, необходимых для строительства клеточной стенки, в размещении ее скелетных элементов. [c.40]


    Прокамбий образует ряд продольных тяжей, состоящих из более узких и длинных клеток, чем основная меристема. Первыми в прокамбии начинают дифференцироваться клетки протоксилемы во внутренней его части и клетки протофлоэмы в наружной. Это элементы первичной ксилемы и первичной флоэмы, которые образуются до завершения роста клеток в длину. В протоксилеме лигнин, как правило, образует только кольцевидные или спиральные утолщения на трахеидах (разд. 6.2.1.). Прерывистость лигнина делает возможным рост и растяжение целлюлозы между утолщениями по мере роста в длину окружйЬзщей ткани. Элементы как протоксилемы, так и протофлоэмы вскоре отмирают и по мере роста окружающих тканей сминаются, растягиваются и наконец спадаются. Их функции принимают на себя ксилема и флоэма, развивающиеся позднее в зоне дифференцировки. [c.132]

    Молодой корневой волосок Протоксилема Метаксилема Начало дифференцировки элементов сосудов ксилемы протоксилема снаружи [c.134]

    Еще дальше от кончика корня в зоне растяжения начинают дифференцироваться сосуды ксилемы, тоже центростремительно (экзархная ксилема) в отличие от центробежной дифференцировки в стебле (эндархная ксилема). Первыми образуются, как и в стебле, сосудистые элементы протоксилемы и у них происходит такая же лигнификация и растяжение по мере роста окружающих клеток. Затем их функции переходят к метаксилеме, которая развивается позднее и созревает в зоне дифференцировки после того, как прекратится растяжение клеток. Ксилема часто доходит до центральной оси корня, и в таких случаях сердцевина не образуется. [c.134]

Рис. 22.21. А. Два последовательных деления веретеновидной инициали, в результате которых образуются ксилема и флоэма (в поперечном разрезе). На самом деле дифференцировка ксилемы и флоэмы до представленного здесь уровня занимает довольно много времени, в течение которого должно образоваться много клеток. Б. Деление веретеновидной инициали с образованием новой веретеновидной инициали (в поперечном разрезе). Рис. 22.21. А. Два <a href="/info/1072150">последовательных деления</a> веретеновидной <a href="/info/510732">инициали</a>, в результате <a href="/info/1493562">которых образуются</a> ксилема и флоэма (в <a href="/info/221508">поперечном разрезе</a>). На <a href="/info/1780185">самом деле</a> дифференцировка ксилемы и флоэмы до представленного здесь уровня занимает довольно много времени, в течение которого должно <a href="/info/1624198">образоваться много</a> клеток. Б. Деление веретеновидной <a href="/info/510732">инициали</a> с <a href="/info/73726">образованием новой</a> веретеновидной <a href="/info/510732">инициали</a> (в поперечном разрезе).
    Все значительные изменения как в составе, так и в строении первичной и вторичной клеточных стенок, отражают процессы, происходящие в питоплазме это лучше всего можно проиллюстрировать на примере развития сосудов ксилемы. В процессе дифференцировки клеток в молодых растущих тканях на стенках сосудистых элементов ксилемы [c.393]

    Вторичная клеточная стенка обычно откладывается между плазматической мембраной и первичной клеточной стенкой, иногда слои откладываются последовательно один за другим (рис. 20-17). Однако в определенных слу чаях особые макромолекулы откладываются либо внутри первичной стенки (как, например, лигнин в клетках ксилемы), либо на наружной ее поверхности. Например, эпидермальные клетки, покрывающие наружную поверхность растения, обычно имеют утолщенную первичную клеточную стенку, внешняя часть которой покрыта толстой водонепроницаемой кутикулой, защищающей растения от инфекции, механического повреждения, потери воды и вредоносного ультрафиолетового излучения (см. схему 20-1). Кутикула секретируется по мере дифференцировки эпидермальных клеток Она состоит преимущественно из кутина (в коре из родственного ему вещества суберина), представлявшего собой полимер из жирных кислот с длинной цепью, который образует на поверхности растения обширную сеть с многочисленными поперечными сшивками. Слой кутина часто пропитывается смесью восков, которые, кроме того, и наслаиваются на него воски являются эфирами спиртов с длинной цепью и жирных кислот (рис. 20-18). Кутикула растительной клетки по состав)" сильно отличается от кутикулы насекомых и ракообразных, построенной из белков и полисахаридов. [c.395]

    Восстановление частей без образования каллуса. Примером такого способа регенерации служит формирование адвентивных побегов из единичных эпидермальных клеток на некотором удалении от раневой поверхности. Другой пример — превращение паренхимных клеток коры в клетки ксилемы при образовании обходного участка проводящего пучка вокруг места его прерывания. Направление регенерации проводящих элементов определяется прежде всего полярным базипетальным транспортом ауксина, который индуцирует генетическую программу ксилемообразования. Дифференцировке элементов флоэмы наряду с присутствием ИУК и цитокинина способствует высокая (4 — 8%) концентрация сахарозы. [c.356]

    Для того чтобы адекватно отвечать на изменение условий и сигналы, поступающие из окружающей среды (свойство раздражимости), каждая клетка постоянно тестирует (проверяет) свое местоположение. Дж. Боннер (1965) для объяснения механизмов управления дифференцировкой предложил принцип морфогенетических тестов. На рис. 11.16 представлена упрощенная схема последовательных этапов дифференцировки клеток в апексе вегетативного побега в соответствии с теорией Боннера. Апикальная клетка делится в поперечном направлении на две дочерние. Каждая из них определяет , является ли она верхушечной. Для апикальной клетки результатом будет продолжение деления, а вторая, субапикальная, тестирует величину группы окружающих ее клеток. Если группа мала, включается подпрограмма деления, функционирующая до достижения определенного программой количества клеток в этом участке апекса. После образования необходимого числа клеток каждая из них тестирует свое положение у поверхности или в глубине клеточной популяции. Если анализ показывает, что какие-то клетки находятся на поверхности группы, включается программа их дифференцировки в клетки эпидермальные. Остальные клетки, оказавшиеся не на поверхности, проводят тест на положение в глубине группы, в результате чего у расположенных в самой глубине индуцируется подпрограмма дифференцировки в клетки ксилемы, а у находящихся [c.362]

    Обычно созревание включает вакуолизацию и увеличение размеров клетки некоторые аспекты этого процесса уже были рассмотрены ранее (с. 17—21). В процессе созревания клетки могут претерпевать как относительно небольшие структурные изменения, например при образовании паренхимной ткапп, так и значительные — при формировании тканей ксилемы и флоэмы. Именно различные пути созревания клеток приводят к их дифференцировке.. [c.24]

    В некоторых типах тканей в процессе днфференцировки происходит раннее отмирание определеных клеток, таких, как сосудистые элементы ксилемы, тогда как соседние клетки паренхимы могут оставаться леивыми в течение многих лет. Изменения, происходящие в протопласте при дифференцировке сосудистого элемента, могут почти в точности соответствовать изменениям, которые позднее происходят в клетках стареющего органа, иапример листа. Однако процесс вакуолизации и увеличения размеров но обязательно включает дегенеративные изменения, поскольку клетки паренхимы могут жить в течение многих лет, например клетки сердцевины и сердцевинных лучей некоторых древесных растений. Таким образом, представляется вероятным, что у травянистых растений многие типы дифференцированных растительных клеток редко полностью используют потенциальные жизненные возможности, и старение и отмирание происходит не по причине действия факторов, присущих самим клеткам, а в силу условий, преобладающих внутри органа или организма в целом. Например, постепенное старение листьев вызывается по-видимому, конкуренцией между зрелыми листьями и растущими зонами побега, и если лист удалить и индуцировать у него образование корней на черешке, то он проживет гораздо дольше, чем в том случае, если ои останется связанным с материнским растением (с. 429). Следовательно, скорость старения органов растения часто находится под контролем всего растения, а не просто определяется внутренне присущими свойствами клеток этого органа. Однако определенным органам, по-видимому, свойствен прироледенный процесс старения, который не регулируется целым растением так, цветки и плоды стареют независимо от того, остаются ли оии на материнском растении или нет. [c.422]

    Процессы, происходящие во время днфференцировки клеток, в конце концов завершаются, и клетка достигает стационарного состояния зрелости, в котором непрерывно поддерлеивается ее метаболизм (конечно, за исключением таких клеток, как мертвые клетки ксилемы). Видимыми признаками дифференцированного состояния являются различия в строении клеточных стенок и некоторых цитоплазматических органелл, таких, как пластиды. Если вспомнить, что ряд тканей специфически приспособлен к выполнению определенных функций (фотосинтез, -секреция или запасание веществ), то становится очевидным, что дифференцировка должна также затрагивать некоторые стороны метаболизма. Такая дифференцировка почти наверняка должна быть связана с различиями в синтезе ферментов, что в свою очередь свидетельствует о сохранении между клетками различий в активности генов даже в зрелом состоянии. [c.472]


Смотреть страницы где упоминается термин Ксилема дифференцировка: [c.147]    [c.203]    [c.30]    [c.63]    [c.187]    [c.395]   
Физиология растений (1989) -- [ c.196 , c.197 ]




ПОИСК







© 2025 chem21.info Реклама на сайте