Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Железо растворение в минеральных

    При растворении следует стремиться к тому, чтобы вещество растворилось полностью, независимо от того, полный или неполный анализ требуется провести. Многие неорганические соли и некоторые органические соединения хорошо растворяются в воде, подкисленной минеральными кислотами, чтобы предотвратить гидролиз (соли железа, висмута и др.). Органические соединения хорошо растворяются в органических растворителях - спирте, ацетоне, хлороформе и др. Большинство металлов и сплавов, а также оксидов, карбонатов, сульфидов и др. растворяется в разбавленных или концентрированных кислотах. Выбор кислот осуществляется на основании химических свойств растворяемых веществ. Так, сплавы и оксиды железа лучше растворять в хлороводородной (соляной) кислоте вследствие склонности Ре " к образованию хлоридных комплексов хром и алюминий не растворяются в азотной кислоте из-за образования на поверхности пассивирующей оксидной пленки и т.д. [c.49]


    Биоразложение пролитого масла. В зависимости от химической структуры (ароматические углеводороды, нафтены, парафины), содержания гетероорганических соединений и присадок, молекулярной массы и т д., на минеральные масла по-разному воздействуют кислород и микроорганизмы (бактерии, грибки). В аэробных условиях скорость разложения зависит от содержания минеральных солей и микроэлементов, температуры и величины pH. В случае углеводородов, растворенных в воде, скорость их разложения определяется химической структурой и содержанием кислорода в воде. Олефины и ароматические соединения окисляются до кислородосодержащих соединений (спиртов, кетонов, фенолов, карбоновых кислот) в сравнительно короткий срок. На биологическое разложение углеводородов расходуется кислород с образованием аммиака, сероводорода и соли двухвалентного железа и марганца в сложившихся восстановительных условиях. [c.229]

    Бензин в резервуарах емкостного парка этиленового производства отстаивается от воды, содержащей растворенные минеральные соли, кислые и щелочные соединения. Продолжительность отстоя сырья от воды — не менее 50 ч. Механические примеси (например, оксиды железа) также удаляются из сырья при его отстое в резервуарах и при прохождении через фильтры, снабженные металлической насадкой и установленные после сырьевых емкостей. Бензиновая фракция из сырьевых емкостей подается в теплообменники 3, где подогревается [c.145]

    Такие элементы, как азот, фосфор, калий, кальций, магний и железо, содержащиеся в растениях в значительных количествах называются макроэлементами. Бор, медь, цинк, марганец, кобальт, молибден входят в состав растений в меньших количествах, поэтому их называют микроэлементами. В некоторых растениях можно обнаружить следы стронция, цезия, рубидия и других ультрамикроэлементов. Вода необходима растению в течение всей его жизни при прорастании семян, для растворения минеральных веществ и т. п. Поэтому все приемы обработки почвы и ухода за растениями должны быть направлены на обеспечение растений водой. [c.6]

    Вода, идущая на приготовление электролита и используемая для электролитического получения водорода и кислорода, должна быть предварительно очищена от механических примесей и Не содержать растворенных минеральных солей, а также масел и органических веществ. Удельное сопротивление воды, направляемой на электролиз, должно быть не менее 60 ООО ом - см. При этом в воде допускается железа не более 1 мг л и С1-иона не более 6 мг/л. Примеси масел и органических веществ в воде нежелательны, так как присутствие их в щелочной среде приводит к пенообразованию. [c.252]


    Результаты многочисленных исследований минерального состава пластовых вод показывают, что основную долю растворенных веществ составляют хлориды натрия, магния и кальция. Кроме них (в зависимости от месторождения) могут присутствовать иодистые и бромистые соли щелочных и щелочноземельных металлов, сульфиды натрия, железа, кальция, соли ванадия, мышьяка, германия и др. Но в отличие от хлоридов, содержание которых исчисляется процентами и десятками процентов от общего количества растворенного вещества, содержание остальных солей измеряется сотыми, тысячными и еще меньшими долями процентов. В связи с этим минерализацию пластовой воды часто измеряют по содержанию ионов хлора в единице объема с последующим пересчетом на эквивалент натриевых солей. [c.9]

    Обычно при выборе источника водоснабжения в соответствии с ГОСТ руководствуются требованием, чтобы общее количество растворенных минеральных солей в воде водоема было около 500 мг/л и не превышало 1000 мг/л по сухому остатку. Предельными концентрациями солей, вызывающих вкусовые ощущения, считаются для хлористого кальция 300 мг/л, для хлористого натрия 150 мг/л, для хлористого магния 100 мг/л, для сульфата кальция 70 мг/л, для хлористого железа 0,3 мг/л. [c.53]

    Рассмотрим процесс анодного растворения железа в минеральной кислоте. Спрашивается, какие ионы железа будут в этом случае отщепляться в раствор  [c.98]

    Получение водорода методом электролиза основано на разлол<ении воды на водород и кислород при прохождении постоянного тока через раствор электролита в электролизерах. Для приготовления электролита применяют едкое кали или едкий натр по ГОСТ химически чистый или по ОСТ технически чистый с содержанием железа не более 0,0005%, хлоридов не более 0,005% и предварительно очищенную от, растворенных минеральных солей и механических примесей дистиллированную воду, которая должна соответствовать ГОСТ 6709—53. [c.21]

    Коагулирование загрязнений воды производится добавлением к ней минеральных солей с гидролизующимися катионами или анодным растворением металлов. Чаще всего используют соли А1 или Ре [в частности, сульфат алюминия и хлорное железо (П1)]. [c.340]

    При химической очистке с использованием комплексонов наблюдается практически полное расходование реагентов и не требуется создание высоких концентраций для обеспечения интенсификации процесса растворения. Преимущество комплексонов по сравнению с минеральными кислотами заключается в их способности переводить оксиды железа в истинно растворимое состояние, что исключает образование взвеси в промывочном растворе. [c.460]

    Получают барит из тяжелого шпата измельчением Для устранения цветового оттенка барита, вызванного примесями оксидов железа и др, его подвергают дополнительной обработке— отбелке , которая проводится двумя способами Первый способ состоит в обработке барита минеральными кислотами (серной, хлороводородной, азотной, фосфорной) при 60 °С с целью растворения указанных примесей После такой обработки барит отмывают водой, подвергают мокрому помолу с классификацией, сушат и измельчают Второй способ отбелки состоит в нагревании барита до 600—700 °С При этом за счет различия в коэффициентах термического расширения основного вещества и примесей происходит растрескивание Образующиеся при растрескивании куски фракционируют и подвергают операциям, как и по первому способу [c.340]

    Вещества минерального и органического происхождения присутствуют в воде во всех видах дисперсного состояния. В грубодисперсном (взвешенном) состоянии находятся глинистые, кварцевые, известковые и гипсовые частицы, ряд веществ животного и растительного происхождения в коллоидном — частицы глин, соединения кремния и железа, сера, продукты жизнедеятельности и распада микроорганизмов, гуминовые вещества в истинно растворенном — газы, неорганические соли щелочных, щелочноземельных и тяжелых металлов, ряд органических соединений, а также бром, иод и другие. [c.38]

    Таким образом, в процессе получения соединений Bi из металла или его сплавов для растворения висмута используют азотную кислоту. Предварительный перевод висмута в оксосоединения позволяет получать концентрированные по висмуту растворы минеральных кислот, а в случае азотной кислоты сократить ее расход и устранить выделение в атмосферу токсичных оксидов азота. Выщелачивание висмутсодержащих сульфидных концентратов осуществляют обычно растворами соляной или серной кислот в присутствии хлоридов натрия, аммония, кальция, магния или железа (III) с получением на стадии выщелачивания хлоридсодержащих растворов висмута. Для извлечения висмута из растворов выщелачивания используют процессы цементации его на железе [2], а также добавлением порощков цинка [56] или свинца [57], что существенно осложняет процесс дальнейшего получения соединений висмута высокой чистоты. С целью эффективной очистки висмута от примесных металлов в последнее время, наряду с процессом гидролиза, широко рассматриваются вопросы экстракционного и сорбционного концентрирования висмута при переработке растворов выщелачивания. [c.54]


    В последние годы начали применять метод получения коагулянтов в электролизерах с растворимыми электродами, называемый методом электрокоагуляции [190]. Сущность метода заключается в анодном растворении металлов, преимущественно алюминия и железа, в водных средах под воздействием электрического тока с последующим образованием гидроксидов. Этот метод позволяет производить эффективную очистку воды от взвесей минерального, органического и биологического происхождения, коллоидов и веществ в молекулярном или ионном состоянии. Электрокоагуляция обладает существенными преимуществами перед реагентными методами компактностью установки, простотой обслуживания и возможностью полной автоматизации. Этот метод перспективен для использования на небольших автономных объектах (на судах речного флота, для малых поселков и др.). [c.188]

    При кислотном растворении образца для окисления органических веществ, карбидов металлов и солей железа (II) используют горячую азотную кислоту. Более сильным окислителем является горячая концентрированная хлорная кислота, которая, например, переводит Сг в Сг . Однако в отсутствие минеральной кислоты хлорная кислота реагирует с органическими веществами со взрывом, что сдерживает ее практическое использование. Окислительную способность хлорной кислоты можно значительно уменьшить простым охлаждением или разбавлением раствора. [c.368]

    Стадия подготовки засевной биомассы I обеспечивает подачу в производственные биореакторы необходимого количества посевного материала — активной культуры микроорганизмов, выращенной в периодически или непрерывно работающих инокуляторах. На стадии подготовки минеральной питательной среды а осуществляется растворение минеральных солей, фильтрация растворов и доведение концентраций элементов в них до заданных соотношений. В качестве минеральных источников питания используют сернокислые соли калия, магния, железа, аммофос, сульфат аммония, а также микроэлементы — соли марганца, цинка, железа и меди. Подготовка углеводородного субстрата (стадия III) включает процессы подогрева, перемешивания жидких парафинов и их дозированной подачи в производственные биореакторы. [c.14]

    По такому же механизму осуществляется секреция паратгормона и кал ьцитонина в паращитовидной железе. Оба гормона влияют на концентрацию кальция, и фосфата в крови. Паратгормон вызывает растворение минеральных веществ в кости и препятствует выбросу фосфата почками и кишечником, в результате чего увеличивается концентрация Са + и фосфата в плазме крови. Кальцитонин, напротив, стимулирует поступление Са + и фосфата из крови в кость, в результате чего концентрация Са + и фосфата в плазме снижается. При высоких концентрациях Са + в крови подавляется секреция паратгормона и стимулируется секреция кальци-тонина. При снижении концентрации Са + в крови уси- [c.63]

    Как поверхностная, так и подземная вода не является чистой. По мере того как вода течет по поверхности земли, постепенно сливаясь и образуя реки, а также проходя через различные породы и становясь при этом подземной, она растворяет небольшие количества почвы и порюд. Эти растворенные вещества обычно не удаляются на станциях подготовки воды, потому что эти природные примеси в небольших количествах, как правило, безвредны. Более того, некоторые минеральные компоненты (такие, как железо, цинк и кальций) в небольших количествах необходимы для здоровья. [c.26]

    Юровский [23, с. 66] не отрицает, что растительные белковые вещества (точнее, цистин) играли большую роль в образовании различных видов органической серы. Он подробно развил и обосновал гипотезу о минеральном происхождении серы в угле. Согласно этой гипотезе основным источником всех видов сернистых соединений в угле являются сульфаты, растворенные в морской воде, которая заливала накопленные растительные материалы в процессе их преобразования. Сюда прибывали и пресные воды, которые приносили соединения железа. Различные условия покрытия угольных пластов, состав покрова и влияние среды на процессы торфо- и углеобразования привели в одних случаях к образованию преимущественно минеральных, а в других — органических сернистых соединений в угле. Юровский придает большое значение в образовании сернистых соединений микроорганизмам, живущим в морской и пресной воде, которые способны разлагать различные серусодержащие вещества до сероводорода. Эти микроорганизмы могли бы превратить сульфаты из морской воды в сероводород, который с железом образует пирит. [c.112]

    Флотация минеральных ископаемых. Весьма интересное и перспективное направление применения СНГ разработано несколько лет тому назад в лабораториях компании Эссо в Великобритании. Давно известно, что руды металлов и сопутствующие им минералы, так же как уголь и связанные с ним компоненты золы и пустой породы, могут разделяться методом флотации. Для этой цели применяют разнообразные жидкости (воду, минеральные масла, растворители), обладающие различным поверхностным натяжением в отношении компонентов шахтного угля и руд металлов. Следовательно, эмульсии двух жидкостей будут иметь неодинаковую степень смачиваемости, т. е. селективную смачиваемость. Однако, несмотря на это, методом флотации не очень легко разделить компоненты, особенно в тех случаях, когда они имеют почти одинаковую плотность. Этим объясняется тот факт, что в прошлом флотационная сепарация практически всецело базировалась на различии поверхностного натяжения. Эффективность сепарации может быть значительно повышена при одновременном использовании как поверхностного натяжения, так и гравитации, т. е. при флотации с применением легких углеводородов. Эффект добавки СНГ или легкого дистиллята после смачивания водоугольной пульпы нефтяным топливом проявляется в растворении легкого углеводорода в абсорбированной нефти и всплывании на поверхность ванны покрытых нефтью кусков угля. Золообразующие компоненты и сера, находящиеся главным образом в виде сульфида железа, например пирита, опускаются на дно ванны. В табл. 68 приведены данные по составу угля до и после обогащения методом флотации легкими углеводородами. Хорошо разработанные схема и оборудование для удаления золы позволяют почти полностью утилизировать легкие углеводороды и снова использовать их в процессе флотационного обогащения. [c.361]

    Растворенные в воде вещества представлены солями минерального происхождения — кальция, магния, железа, калия, натрия, марганца, меди веществами и солями органическогс происхождения — в основном это продукты распада остатко животного и растительного мира производственной деятельности человека — минеральные и органические удобрения, компоненть очистных вод и выбросов промышленных предприятий. [c.258]

    В разбавленных растворах минеральных кислот, имеющих довольно низкое значение pH, в растворах органических кислот и различных композиций с рН=2,0—3,5, обладающих способностью образовывать прочные водорастворимые комплексы с ионами железа, коррозия сталей существенна. Отсутствие надежного ингибирования в этих условиях опасно не только с точки зрения растворения основного металла, но сопряжено с усиленным наводо-роживанием, коррозией напряженных участков, сварных швов. Для комплексообразующих веществ ингибирование позволяет сократить нерациональный расход дефицитных и дорогих реагентов на коррозионный процесс. При использовании ингибиторов в растворах органических кислот скорость коррозии котельных сталей меньше, чем в растворах минеральных кислот с ингибиторами. [c.7]

    Наибольшей способностью переводить оксиды железа в истинно растворенное состояние отличаются растворы моноцитрата аммония и композиций трилона Б с лимонной кислотой, образующие прочные водорастворимые комплексы с ионами железа И и железа III. В растворах соляной кислоты за счет активного растворения оксида железа II и металла появляется взвесь, которая в процессе очистки частично переходит в раствор. Для гидразик-но-кислотных растворов, несмотря на повышенную температуру, большое количество образующейся взвеси можно объяснить сильным разбавлением минеральных кислот. С точки зрения уменьшения количества взвеси целесообразнее применять соляную, а не серную кислоту. В растворах других кислот (концентрате НМК, фталевой, адипиновой) взвесь присутствует в мелкодисперсной форме, но довольно г. значительных количествах (до 15—20%), что объясняется ничтожно малой растворимостью соединений железа III и низкой скоростью растворения оксида железа III и магнетита в этих средах. [c.7]

    Еще менее эффективны растворы адипиновой кислоты и гидразин-но-кислотные. Отрицательной стороной этих методов являются не только меньшая скорость растворения оксидов железа, но и повышенное количество взвеси. Для растворов, содержащих адипиновую кислоту, благодаря ее низкой растворимости необходимы, кроме того, высокие температуры и опасно прекращение циркуляции растворз. При гидразинно-ки слотной очистке существенно усложняется технология, так как кроме предварительной гидразинной обработки в процессе очистки необходима дополнительная дозировка минеральной кислоты и гидразина для поддержания значения pH, равного 2,5—3,5, и концентрации гидразина — 50—80 мг/кг. По этим причинам использование для предпусковых очисток гидра-зинно-кислотного метода и адипи-повой кислоты практически прекратилось. Вопрос о применимости моноцитрата аммония рассмотрен в 1-3. [c.8]

    К истинно минеральным компонентам нефти относятся различны растворимые соли, образованные металлами и кислотами, а также диспергированные до коллоидного состояния минеральные вещества, вмещающие нефть пород. В нефтях идентифицировано > 40 различных элементов, главными из которых являются ванадий и никель (см. гл. 7). Однако их следует рассматривать как входящие в состав элементоорганических соединений, а не минералов. Содержание твердых минв ральных частичек в нефти не превышает обычно 1,5 %. Из присутствие в нефти затрудняет ее транспортирование по трубопроводам, вызывав износ трубопроводов, приводит к отложению твердых остатков в тепла обменной аппаратуре, что ухудшает ее работу и повышает зольносл тяжелых остатков перегонки нефти. Минеральные примеси могут быть I виде растворенных в воде солей, например хлоридов, которые гидрО лизуются при нагреве с образованием хлористого водорода. Послед ний растворяет отложения сернистого железа, защищающего поверхность трубопроводов от коррозии. Высвободившийся сероводород участвует в дальнейших процессах коррозии. [c.48]

    Методика определения в цитратном растворе сводится к следующему [1037]. Анализируемый раствор, содержащий от 1 до 10 жкг Со, должен быть почти нейтральным и иметь объем около 5 мл. Минеральные кислоты предварительно удаляют выпариванием. Прибавляют 10 мл 0,2 М раствора ли.чон-ной кислоты и 1,2 мл фосфатно-боратного буферного раствора. Последний готовят растворением 6,2 г борной кислоты и 35,6 г двузамещенного фосфата натрия в 500 мл 1 N раствора гидроокиси натрия и разбавлением полученного раствора до 1 л. pH после прибавления буферного раствора должно быть около 8 (контроль по крезолово.му красному). Далее прибавляют точно 0,5 мл раствора нитрозо-К-соли и хорошо перемешивают. Кипятят 1 мин., прибавляют 1 мл концентрированной азотной кислоты и снова кипятят 1 мин. Раствор охлаждают в темном месте и разбавляют до 10 мл, после чего измеряют оптическую плотность при 420. имк. Если предполагают пользоваться при сравнении окрасок колориметром, тогда лучше удалить избыток реагента окислением бромной водой. Для этого после прибавления азотной кислоты приливают к раствору 0,5 мл бромной ьоды, оставляют на 5 мин. и удаляют затем избыток брома кипячением раствора. Не мешают 10 мг железа и меди и 0,1—0,2 мг никеля. [c.140]

    Предлагались различные добавки, способные понижать коррозию различных металлов и особенно коррозию железа. Действие"этих добавок как минеральных, так и органических заключается в способности их взаимодействовать с поверхностью металла. В результате образуется тонкая пленка комплексов металла, которая препятствует диффузии растворенного газа к поверхности металла. Предложены и другие методы, например удаление из раствора кислорода -восстановлением или другим способом. Эти различающиеся технологии не обеспечивают достаточно полной защиты, особенно в том случае, если для охлаждения используется мбрская вода. Присутствие хлорид-ионов в морской воде усугубляет коррозию металлов в воднь(х средах. [c.34]

    Исследования, проведенные с водой из р. Миссури, показали, что с минеральными частицами взвеси ассоциировано около 60% органических веществ [126]. С увеличением степени гидрофильности минеральных взвесей возрастает количество органических примесей, удаляемых коагуляцией, что указывает на более высокую адсорбционную способность гидрофильных минералов. С другой стороны, коллоидные частицы и макромолекулы органических веществ могут проявлять по отношению к частицам минералов защитное действие и затруднять их коагуляцию [119, 127]. Гуминовые вещества проявляют защитное действие по отношению к почвенным суспензиям, золям кремпекислоты, гидроокисям алюминия и железа. Этим объясняется, в частности, наличие растворенного железа в водах, богатых кислородом И28]. Максимальная адсорбция гуминовых веществ имеет место при низких значениях pH воды, когда их ДП близок к нулю (рис. II.4). [c.59]

    Прозрачность воды по диску Секки после зарегулирования резко возросла вследствие уменьшения скорости течения воды. Колебания содержания отдельных форм минерального азота увеличились по сравнению с естественными условиями, но менее заметно, чем в Горьковском водохранилище. Концентрация растворенных фосфатов изменилась в тех же пределах, что и в Горьковском водохранилище. Содержание железа, в отличие от Горьковского водохранилища, почти не имеет сезонной зависимости, наблюдается четкая его стратификация по высоте. Имеется тенденция к повышению концентрации кремния осенью и особенно зимой. [c.240]

    Обычно источниками воды для систем городского водоснабжения служат реки, природные озера, водохранилища, грунтовые воды, забираемые из скважин глубокого или мелкого заложения. Из скважин, как правило, получают холодную незагрязненную и однородную по качеству воду, которая легко очищается перед подачей ее в городскую водопроводную сеть. Очистка может потребоваться для удаления растворенных газов и нежелательных минеральных веществ. Самая простая обработка (рис. 7.1,а) включает дезинфекцию и фторирование. Вода, добываемая из глубоких скважин, хлорируется в целях приобретения защитных свойств на случай потенциалыного загрязнения в трубоповодах распределительной системы. При использовании скважин мелкого заложения, пополняемых поверхностными водами, хлор одновременно дезинфицирует грунтовые воды и обеспечивает приобретение защитных свойств. Фтор добавляется в воду для уменьшения распространения кариеса зубов. Растворенные железо и марганец при контакте с воздухом окисляются, образуя мелкие частички ржавчины, придающие воде нежелательный цвет. Эти элементы удаляют путем окисления их хлором или марганцовокислым калием и отделения выпавших осадков фильтрованием (рис. 7.1,6). Избыточная жесткость воды устраняется умягчением (рис. 7.1,в). Известь и, если необходимо, соду смешивают с необработанной водой, после чего удаляют выпавший осадок. Для стабилизации свойств воды перед окончательным фильтрованием проводят ее обработку углекислым газом. В процессе обработки грунтовых вод применяют аэрацию, в результате которой удаляются растворенные газы, а вода насыщается кислородом . [c.170]

    Первоначально термин активация имел отношение к усилению абсорбционных и адсорбционных свойств, но со временем его стали относить и к каталитическим свойствам. Обработка сильными минеральными кислотами приводит к изменению ряда химических и физических свойств глин, причем некоторые свойства мало изучены и зависят от концентрации кислоты, температуры и времени контакта. Было исследовано, каким образом различные изменения в глинах влияют на каталитические свойства, а именно 1) на замену обменпоспособных катионов водородом или другими кислотными ионами 2) па растворение глины, т. е. но существу алюминия,, магния и железа, а также на растворение и пептизацию кремневой, кислоты (сопровождающуюся раскрытием структуры, увеличением объема пор и доступной поверхности) 3) па образование новых фаз путем взаимодействия диспергированных частиц и растворенных веществ или этих частиц и веществ с оставшимся скелетом вещества1 глины. [c.25]


Смотреть страницы где упоминается термин Железо растворение в минеральных: [c.105]    [c.279]    [c.200]    [c.15]    [c.22]    [c.450]    [c.73]    [c.677]    [c.117]    [c.70]    [c.382]    [c.70]    [c.168]    [c.74]    [c.244]    [c.705]   
Химические источники тока (1948) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте