Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Клеточная стенка изменения

    Влияние активной реакции среды. Каждый микроорганизм может жить лишь при определенной реакции среды. Влияние pH среды на активность микроорганизмов обусловлено взаимодействием ионов водорода с ферментами, находящимися в цитоплазматической мембране и в клеточной стенке. Изменение концентрации водородных ионов во внешней среде не сказывается на концентрации их в цитоплазме, так как цитоплазматическая мембрана непроницаема для ионов водорода и гидроксила. [c.285]


    Микрофибриллы в клеточной стенке располагаются с различной степенью упорядоченности (см. 8.6.2). В первичной стенке образуется простая многослойная сетчатая структура с предпочтительной ориентацией микрофибрилл, меняющейся по толщине стенки. Формирование такой структуры осуществляется на стадии увеличения поверхности клетки и может происходить в результате растяжения клетки. Микрофибриллы откладываются на растущую поверхность стенки перпендикулярно оси растяжения, но по мере роста клетки их ориентация меняется. Степень изменения ориентации будет наибольшей у микрофибрилл наружной части растущей поверхности, где они будут иметь предпочтительную ориентацию вдоль оси растяжения, и уменьшается по мере перехода к внутренней части первичной стенки, где микрофибриллы преимущественно ориентированы в поперечном направлении. Кроме этого, в первичной стенке у многих клеток имеются продольные тяжи из параллельно ориентированных микрофибрилл. Вторичная стенка отличается более высоким содержанием микрофибрилл, которые располагаются в отдельных слоях параллельно друг другу под определенным углом к оси клетки. Таким образом, биосинтез целлюлозы должен обеспечить получение линейного гомополисахарида со сравнительно большой степенью полимеризации, образование целлюлозных микрофибрилл и их ориентацию в клеточной стенке. Это весьма сложный процесс, многие детали которого до сих пор неясны. [c.335]

    Клеточная стенке древесины и ее изменение при химическом воздействии / П. В.Н. Сергеевой. Рига., 1972.506 с. [c.125]

    Препараты ЛМР считают наиболее пригодными для исследования строения лигнина и моделирования его химических реакций, однако и эти препараты не идентичны с природным лигнином, и, кроме того, их нельзя считать представительными для всего лигнина клеточной стенки. Размол древесины увеличивает доступность лигнина и вызывает его механическую деструкцию. При механической деструкции происходят реакции гомолитического расщепления связей лигнина с гемицеллюлозами и связей С-О-С и С-С в сетке лигнина с возникновением промежуточных свободных радикалов, которые вступают в реакции рекомбинации и инициируют реакции полимеризации и окисления кислородом воздуха. Поэтому ЛМР, хотя и близок к природному лигнину, все же химически изменен. Первоначальную методику Бьеркмана в дальнейшем неоднократно модифицировали. [c.371]


    Метод культивирования отдельных клеток позволяет изучить действие ряда соединений на скорость процесса клеточного деления, возникновения элементов клеточных стенок, изменений в числе митохондрий и т. д. Трудоемкость указанного метода ограничивает его применение для серийных исследований. [c.19]

    Максимум набухания приходится на концентрацию 75—80%. Существенно, что изменения имеют место не только на поверхности целлюлозных волокон, но затрагивают также кристаллическую часть целлюлозы, о чем свидетельствуют изменения плотности клеточной стенки целлюлозы й (рис. 32, а) и ее индекса кристалличности ИК (рис. 32, б), определенного рентгеновским способом для бумаги-основы, обработанной МЭА при различных концентрациях и температуре пропиточных растворов. [c.153]

    Эта схема была подробно рассмотрена в ряде работ. Например, в работе [58] было высказано предположение о возможности протекания этих процессов как в протоплазме, так и в клеточных стенках растений. Последняя точка зрения была признана рядом исследователей, которые указанными выше переходами объясняли наблюдаемые изменения в составе клеточных стенок в процессе их развития. Так, на основе приведенных выше схем объяснялось относительное увеличение содержания в клеточных стенках растений пентозанов, высказывалось предположение о существований в макромолекулах целлюлозы дефектных звеньев, состоявших из остатков глюкуроновой кислоты и пентоз. Эта точка зрения в настоящее время считается неправильной, и объясняется этот вывод различным строением макромолекул полисахаридов, входящих в состав гемицеллюлоз. Эти различия в основном сводятся к следующему  [c.331]

    На плотность древесины также сильно влияет содержащаяся в ней вода. Во-первых, она увеличивает массу образца, а во-вторых, набухание клеточных стенок в воде вызывает изменение объема образца. Поэтому плотность древесины определяют либо при отсутствии воды, либо при ее определенной массовой доле в древесине. Полностью высушенные образцы активно поглощают пары воды из окружающего воздуха и в ряде случаев более удобно обращаться с образцами древесины, содержащими известное количество воды и находящимися в относительном равновесии с окружающей атмосферой, В технологических расчетах иногда используют базисную плотность древесины, представляющую собой отношение массы абсолютно сухого образца древесины к его объему в максимально набухшем состоянии. Такое состояние характерно для свежесрубленной древесины и древесины, находившейся длительное время в контакте с водой. В этом случае фактически определяют базисную относительную плотность однако приравнивая 1 г вытесненной воды к объему 1 см , превращают ее из безразмерной величины в величину, имеющую размерность. [c.255]

    Коэффициент теплового расширения абсолютно сухой древесины положителен для всех структурных направлений, т.е. древесина расширяется при нагревании и сжимается при охлаждении. Коэффициент линейного теплового расширения, т.е. относительное изменение размеров образца при нагревании на 1 С, вдоль волокон не превышает 5,5-Ю на 1°С. Коэффициенты линейного расширения поперек волокон в 5... 15 раз больше. Однако для образцов влажной древесины нагревание может привести к сокращению размеров из-за уменьшения степени набухания клеточных стенок при сушке древесины. [c.258]

    Важный фактор, обеспечивающий в культуральной среде высокие концентрации аминокислоты, синтезированной внутри клетки, — проницаемость клеточных мембран. Проницаемость клеточной мембраны увеличивают либо с помощью мутаций, либо путем изменения состава питательной среды. В последнем случае в культуральной среде создают дефицит биотина (1 — 5 мкл/л), добавляют пенициллин (2—4 мкг/л), детергенты (твин-40 и твин-60) или производные высших жирных кислот (пальмитаты, стеараты). Биотин контролирует содержание в клеточной мембране фосфолипидов, а пенициллин нарушает биосинтез клеточных стенок бактерий, что повышает вьщеление аминокислот в среду. [c.45]

    Основная трудность анализа древесины обусловлена не большим числом компонентов, которые требуется определить, а существованием очень тесных структурных и химических связей между макромолекулами в клеточной стенке. Трудности избирательного разделения основных компонентов древесины приводят к тому, что на промежуточной ступени разделения в выделенных полисахаридах (холоцеллюлозе) остается часть лигнина и что отделить целлюлозу от полиоз без ее деградации и изменения молекуля зных свойств практически невозможно. [c.20]

    Деструкция целлюлозы наблюдается при всех способах делигнификации. Изменения в клеточной стенке при хлоритной делигнификации, включая топохимию, а также набухание и усадку волокон, изучали многие авторы [114, 132, 205, 250, 251, 260]. Молекулы лигнина, растворяющегося при хлоритной делигнификации, более однородны по размеру, чем лигнинов от сульфатной и сульфитной варок [2, 236]. [c.28]


    Наблюдая за изменениями в составе клеточных стенок в ходе развития хлопкового волокна, установили, что максимальное количество остатков галактозы, маннозы, рамнозы, арабинозы, фукозы, уроновых кислот и нецеллюлозной глюкозы соответствует концу образования первичной стенки или началу образования вторичной стенки. До конца развития волокна возрастают лишь абсолютные количества остатков ксилозы и глюкозы, входящей в состав целлюлозы. [c.187]

    Часть полиоз оказывается устойчивой к мягкой окислительной деструкции, что объясняется тесным взаимопроникновением полисахаридов в сравнительно упорядоченных участках клеточных стенок в их природном состоянии [40 ]. Изменение пористости холоцеллюлозы после осторожного удаления полиоз указывает также и на проникновение полиоз в сетку лигнина [54]. [c.187]

    В образцах древесины относительно молодых, т. е. возрастом до нескольких тысяч лет, в условиях отсутствия атаки микроорганизмами не происходит изменений в структуре клеточных стенок или эти изменения лишь незначительные. [c.324]

    Исследуется изменение содержания химических компонентов в отдельных частях растений, в которых происходит быстрый рост благодаря наличию больших количеств меристематических тканей. Наблюдение изменений химического состава ведется от начала вегетационного периода, когда образец содержит в основном молодые клетки, т. е. клетки, имеющие преимущественно только первичную оболочку (Р) и, естественно, срединную пластинку (М), до конца вегетационного периода, когда уже сформировались все сло 1 клеточной стенки — М, Р, 5], и 5,. (см. рис. 1.1). [c.33]

    НЫМ слоям клетки, однако с нх помощью можно составить извест-ное представление об изменении состава клеточной стенки в радиальном направлении. [c.34]

    В многочисленных исследованиях обращалось внимание на существование зависимости между содержанием отдельных компонентов гемицеллюлоз и стадиями развития растительных тканей. Так, было обнаружено, что относительное содержание пентозанов в стеблях однолетних растений — ячменя [14], овса, гороха, бобов [15], ваточника [16], ржи [17], а также бамбука [18], гвайулы [19], тростника [20] с возрастом непрерывно увеличивается. Этот вывод часто используется для оценки качества растительного сырья для производства фурфурола. Однако для характеристики процессов, протекающих при образовании клеточных стенок растений, этот вывод неприменим. Объясняется это тем, что в молодых тканях в больших количествах присутствуют водорастворимые низкомолекулярные компоненты (сахара, пектины и др.), которые с возрастом исчезают. Поэтому для объективной оценки изменений химического состава клеточных стенок в процессе их роста необходимо измерять абсолютные количества отдельных компонентов, входящих в состав клеточных стенок, в пересчете на единицу внутренней, поверхности клеток или на единицу объема живой ткани [21]. Позднее было предложено вести расчет количества прирастающих компонентов на одну клетку [22] или на участок живой ткани, не [c.308]

    К вопросу о надмолекулярной организации ГМЦ можно отнести их ламеллярное распределение в пределах одного слоя клеточной стеики. Косвенное доказательство его существования в древесной клеточной стенке можно получить, если удалить ГМЦ щелочной экстракцией образца и определить изменение толщины клеточной оболочки и размера люмена иод сканирующим электронным микроскопом [28]. Наблюдаемые изменения после щелочной экстракции клеточной стенки позволяют судить о ламеллярном распределении ГМЦ вокруг оси волокна [21]. [c.153]

    Большое значение придается сложноэфирным связям между лигнином и звеньями уроновых кислот нецеллюлозных полисахаридов. На преобладание сложноэфирных связей указывают существенное изменение структуры и механических свойств исходной и частично деструктированной под действием щелочной среды древесины, усиление набухания клеточных стенок и увеличение нх пластичности. [c.177]

    Степень переваримости органических веществ во многом, зависит от строения полисахаридов, плотности их упаковки в клеточных стенках растений. Поэтому характеристика особенностей структуры полисахаридов и их изменения в процессе ферментации привлекает все большее внимание исследователей [57, 58, 77, 87]. [c.246]

    Между гелифицированными и фюзенизованными микрокомпонентами нельзя провести резкой границы. Фюзенизация может происходить на начальной стадии изменения растительных тканей или после того, как уже начался процесс гели-фикации. В первом случае получается типичный фюзен, в котором ткани полностью сохраняют клеточное строение. Часто клеточная структура фюзена может быть нарушена из-за разрыва клеточных стенок. [c.74]

    Клеточная стенка анатомических элементов древесины, волокон технической целлюлозы и других волокнистых полуфабрикатов имеет сложное строение, связанное с распределением в клеточной стенке высокомолекулярных химических компонентов. Для изучения этих вопросов применяют, кроме световой, микроскопию в ультрафиолетовом и поляризованном свете, а также флюоресцентную микроскопию. Для исследования тонкого строения клеточной стенки - ультраструктуры (субмикроструктуры) используют главным образом электронную микроскопию (см. 5.4) с применением просвечивающих (ПЭМ) и растровых, или сканирующих, электронных микроскопов (РЭМ). Эти исследования имеют важное значение для понимания изменений, происходящих с анатомическими элементами древесины и другого растительного сырья, а также в клеточной стенке в процессах делигнификации и других процессах химической и химико-механической переработки древесины. [c.214]

    Наиболее широкое стратиграфическое распространение свойственно синезеленым водорослям. Они относятся к прокариотам, что сближает их с бактериями. Есть и другие признаки, более свойственные бактериям строение клеточной стенки, наличие газовых вакуолей, способность к фиксации азота и др. В настояшее время их чаще называют цианобактериями. Они существуют на Земле более 3 млрд лет. Автотрофные формы при фотосинтезе используют СО2 и выделяют кислород благодаря их жизнедеятельности была создана кислородная атмосфера Земли. В течение всей истории своего развития они не претерпели изменений. В протерозойских бассейнах они были подавляющей формой жизни и поставщиком ОВ. Многими исследователями отмечались консервативность цианобактерий, их экологическая выносливость. Синезеленый цвет определяется наличием синего и бурого пигментов в сочетании с хлорофиллом. Некоторые формы имеют и другие пигменты — от красного до черного. Эти водоросли токсичны, хищны, подавляют развитие других водорослей и зоопланктона, радиорезистентны, приспособлены жить в темноте, в горячих и холодных водах. Очень важным свойством этих водорослей является антибактериальное действие их липидов (циано-фитина и хлороллина). Это предопределило устойчивость ОВ синезеленых (как и некоторых зеленых водорослей) к микробному разрушению. Цианобактерии представлены как одноклеточными, так и многоклеточными формами. [c.111]

    Слой 82, образующий основную часть клеточной стенки с наиболее высокой степенью ориентации, состоит из тонких ламелл (30...40 в ранней древесине и до 150 и более в поздней). Микрофибриллы в этих ламеллах идут по крутым спиралям (правонаправленным) под углом к оси волокна от 5... 10° в ранней древесине до 20... 30° в поздней. С увеличением длины волокна угол ориентации уменьшается и прочность на разрыв возрастает. Между слоями 82 и 8з(Т) также существует тонкий переходной слой (833), состоящий из нескольких ламелл с изменением угла ориентации микрофибрилл. [c.221]

    Набухание в воде клеточных стенок изменяет механические свойства древесины происходит снижение показателей прочности и модулей упрз ости, уменьшается твердость древесины и т.д. Повышение температуры снижает прочностные показатели древесины. Деформативность древесины может сравнительно резко меняться при изменении температуры, что связано с переходами компонентов клеточной стенки из одного релаксационного состояния в другое. На температуры переходов сильно влияет присутствие воды, приводящее к их значительному снижению, что используют при производстве термомеханической массы, древесно-волокнистых и древесно-стружечных плит. [c.257]

    Клеточная стенка древесины и ее изменения при химическом воздействии. Рига Зинатне, 1972. 510 с. [c.620]

    Хегберг и Шен [48] изменение порядка реакции (торможение процесса в ходе варки) связывают с топохимическими факторами различной доступностью лигнина и изменением его реакционной способности в зависимости от местоположения в клеточной стенке. [c.274]

    В зоне ткани, включающей камбий, не было отмечено периферических изменений в количестве пероксидазы. Однако в зрело1 1 тяговой древесине наблюдалась интенсивная активность пероксидазы в нелигнифицированной области клеточных стенок волокон. Подобная же активность наблюдалась в стенках волокон тяговой древесины диффузного типа. [c.768]

    Когда срезы предварительно обрабатывали солью цианистоводородной кислоты, реакция пероксидазы не происходила. Прибавление перекиси водорода к ткани не приводило к образованию лигниноподобных материалов. Это показывало, что неспособность тяговой древесины к лигнификации может вызываться различным строением предшественников лигнина на обеих сторонах стебля. Изменение клеточного метаболизма, ведущее к образованию высококристаллической целлюлозы в клеточной стенке, может не дать мест, с которыми лигнин мог бы образовать связь. По-видимому в лигнифицированных клетках лигнин ассоциирован с нецеллюлозной фракцией клеточной стенки. [c.768]

    Действие полисахаридаз не обязательно связано с необходимостью использовать мономерные единицы полисахаридов в энергетическом обмене организма. Расщепление полисахаридов может вызываться необходимостью изменения свойств полисахаридов, выполняющих другие биологические функции. Примерами могут служить расщепление клеточных оболочек семян под действием целлюлаз и близких ферментов при прорастании, расщепление клеточной стенки бактерий под действием лизо-цима, содержащегося, например, в слюне и выполняющего защитную функцию, или изменение свойств углеводсодержащего биополимера поверхности эритроцитов под действием нейраминидазы вируса гриппа. [c.615]

    В группе методов получения растворимых лигнинов наиболее важное значение имеет метод выделения сравнительно неизмененного лиг h4i на молотой древесины (ЛМД), или лигнина Бьеркмана, заключающийся в размоле древесины в вибрационной мельнице с последующим извлечением лигнина диоксаном. Разработан ряд модификаций этого метода с изменением условий предварительной обработки древесины, размола, извлечения лигнина и его очистки [16, 33, 129, 174, 182]. Применение ультразвука при извлечении лигнина значительно снижает его продолжительность [238, 239, 240]. Выделенные лигнины близки (по содержанию ме-токсильных групп, остаточных полисахаридов и ММР) к ЛМД, полученным по исходной методике. Выход сырых ЛМД достигает 60 % общего количества лигнина в древесине, однако в случае древесины хвойных пород выход ЛМД после очистки не превышает 25 %, а чаще он много ниже. Выход ЛМД из древесины лиственных пород выше [16, 129]. Препараты ЛМД рассматриваются как наиболее пригодные для исследования, хотя они, вероятно, не идентичны с природным лигнином и, по-видимому, не могут быть представительными для всего лигнина клеточной стенки. [c.42]

    Морфологические изменения и изменения физических свойств указывают на химические превращения компонентов клеточной стенки. Результаты исследований образцов древесины дуба Quer us robur, Q. petraea) возрастом от 400 до 8500 лет показывают, что с увеличением степени деградации увеличиваются способность к набуханию и сорбционная способность и ухудшаются механические свойства [1, 9, 10, 17, 21 . Химический анализ образцов старой и ископаемой древесины указывает на уменьшение содержания полисахаридов и возрастание количества негидролизуемого остатка по мере увеличения возраста и степени деградации. У относительно молодых, но сильно деградированных образов обнаружили присутствие микроорганизмов [27]. [c.325]

    У азотобактера образование цист сопровождается изменением морфологии клетки, потерей жгутиков и накоплением в цитоплазме в больших количествах фанул поли-(3-оксимасляной кислоты одновременно происходит синтез дополнительных клеточных покровов внешних (экзина) и внутренних (интина) по отношению к клеточной стенке (рис. 22, Б), различающихся структурно и химическим составом. [c.68]

    Виноградные ягоды, а также сусло и вина содержат малоизученные ГМЦ. Они оказывают определенное влияние на качество и технологию произаодства вин. Среди ГМЦ наиболее изучены водорастворимые полисахариды. В их состав входят разнообразные монозы галактоза, глюкоза, манноза, арабиноза, ксилоза, глюкуроновая кислота [59, 60]. В составе клеточных стенок виноградной ягоды найдены арабиногалактан и маннан. Молекулярная масса первого иосле фракционирования колеблется в широком диапазоне — от 7760 до 12 300,второго составляет величину порядка 46 200. Макромолекула этого маннана отличается линейностью строения, состоит из остатков а-О- и р-Д-маннозы. Предиоложено, что основная цепь включает участки, в которых остатки маннозы соединены (1-связями (1—>-3) и (1—>-6), а боковые сформированы. из остатков а-/)-маннозы, соединенных с маниоииранозами основной цепи связью (1— -б). Изучена [59] динамика изменения ГМЦ. в процессе созревания винограда и производства различных вин. [c.113]

    Мереуэзер [55], анализируя 156 литературных источников, опубликованных с 1866 по 1956 г., пытался систематизировать материал в зависимости от применяемых различных воздействий на лигнифицированную клеточную стенку, вызывающих фракционирование химических компонентов и выделение ЛУК. Важным доказательством за илп против химической связи между лигнином и остальными компонентами, ио его мнению, является, в первую очередь, ответ на вопрос можно ли отделить компоненты друг от друга физическими методами, такими, как растворение, ие вызывающими химических изменений Рассмотренные [55] работы Брауна, Грона, Беркмана, Харриса, Чудакова и других показали, что из древесины без химических изменений компонентов можно выделить лишь незначительную часть лигнина. [c.163]

    А. К. фрейберга и В. С. Громов, проводившие сульфитную варку березовой древесины, подвергнутой предварительной обработке растворами различных солей с разными значениями pH, а также растворами аммиака различной концентрации, наблюдали, что в ряде случаев даже прп достаточно высокой стеиени деацетилирования, например при обработке растворами аммиака, фосфатов и Др., в отличие от обработки растворами NaOH и Са(0Н)2 не происходит заметного повышения выхода технической целлюлозы и содержания в ней пентозанов [288, 289], Осуществляя де--ацетилирование березовой древесины в мягких условиях — обработкой 0,15 н. раствором метилата натрия в метаноле ири комнатной температуре — и подвергая деацетилированные образцы сульфитной варке, упомянутые авторы не обнаружили связи между степенью деацетилирования и стабилизацией иентозанов. На основании полученных данных делается вывод, что отщепление ацетильных групи О-ацетил-4-О-метилглюкуроноксилана не является основной причиной стабилизации данного иолисахарида относительно кислотного гидролиза в условиях сульфитной варки березовой древесины. Высказывается предположение, что к стабилизации глюкуроноксилана ведет не само явление деацетилирования, а включающий деацетилирование комплекс химических и физико-химических изменений, происходящих в древесине в ироцессе обработки, а именно омыление ацетильных групи, расщепление лигноуглеводных связей, частичная деполимеризация ГМЦ, ведущие к повышению подвижности фрагментов макромолекул ГМЦ, набухание древесины, разрыхление ее структуры, увеличение площади внутренней поверхности и объема субмикроскопи-ческих капилляров в клеточных стенках. В результате создаются условия для упорядочения цепей макромолекул части ГМЦ, образования более прочных водородных связей между ними и макромолекулами целлюлозы, повышающих ттойчивость их к кислотному гидролизу. [c.309]

    Изучая изменения тонкой структуры тополевой древесины в процессе натронной, сульфатной и сульфитной варок и сравнивая их с ходом растворения ГМЦ и лигнина, Каепсрсон и соавт. [413] высказали предположение, что как при натронной, так и при сульфатной варке в конце процесса в области первичной оболочки (Р) и/или 5] и наружной части 82 вторичной оболочки локализуется основная часть стабилизированных пентозанов, Это объясняется, по мнению авторов, тем, что действие щелочного раствора начинается от люменов клеток и возможность растворения локализованных в большом количестве в наружных частях клеточных стенок разветвленных пентозанов ограничена. [c.368]

    Наблюдая изменения в тонкой структуре тополевой древесины ири варках со щелочными растворами и при ступенчатых кислотных и щелочных обработках в различной последовательности, Якопян и Касиерсон [553] делают заключение, что при разных обработках растворение ГМЦ происходит ио-разному из различных слоев клеточных стенок. [c.369]


Смотреть страницы где упоминается термин Клеточная стенка изменения: [c.14]    [c.247]    [c.286]    [c.160]    [c.154]    [c.310]    [c.196]    [c.185]    [c.324]    [c.313]    [c.381]   
Особенности брожения и производства (2006) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Громов B.. Роль структуры клеточных стенок в процессе получения из древесины целлюлозно-волокнистых материалов Клеточная стенка древесины и ее изменения при химическом воздействии. Рига

Стевны

Стейси



© 2025 chem21.info Реклама на сайте