Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термические превращения углеводородов в газовой фазе

    ТЕРМИЧЕСКИЕ ПРЕВРАЩЕНИЯ УГЛЕВОДОРОДОВ В ГАЗОВОЙ ФАЗЕ [c.306]

    Вероятность взрыва в технологической системе определяется, прежде всего, наличием или образованием з достаточном количестве взрывоопасных или других нестабильных соединений, склонных к самоускоряющимся экзотермическим физикохимическим превращениям. Такими веществами могут быть сырье, целевые или побочные продукты в газовой, жидкой или твердой фазе. К веществам такого рода относятся ацетилен и его производные, способные при сравнительно невысоких параметрах (температура и давление) к термическому разложению активные непредельные соединения, склонные к экзотермической спонтанной полимеризации пероксидные соединения, способные спонтанно саморазогреваться при сравнительно невысоких температурах реакционные массы процессов нитрования углеводородов и другие нитросоединения, получающиеся как побочные продукты нестабильные продукты осмоления, полимеризации, окисления и другие побочные соединения, накапливающиеся в аппаратуре в значительных количествах расплавы аммиачной селитры и других солей азотной и азотистой кислот, а также их смеси с органическими веществами. Наличие [c.79]


    Молекулярная структура органического вещества на этом этапе существенной деструкции еще не испытывает, активного нефтеобразования не происходит при любой длительности процесса, вплоть до 400—600 млн. лет. При температуре до 50— 70°С (вероятно, даже до 90°С) порог активации реакций деструкции молекулярной структуры органического вещества еще не достигается и любое самое продолжительное геологическое время не может компенсировать недостаток температуры. В более глубокой зоне (до 2,5—3 км при температуре до 90—100—150°С) направленность процесса термического превращения сапропелевого органического вещества принципиально изменяется. При незначительном изменении содержания углерода в керогене заметно снижается содержание водорода быстро и значительно возрастает и достигает максимума концентрация хлороформенного битумоида в целом, в том числе высокомолекулярных нефтяных углеводородов (С15—С45) образуются и достигают максимальной концентрации низкокипящие углеводороды бензиновых фракций (Се— С14). В составе газовой фазы органического вещества достигает максимума концентрация гомологов метана (С2 — С5) содержание СН4 пока незначительно. [c.11]

    При атмосферном давлении в 1 см газа содержится приблизительно 10 , а в таком же объеме жидкости — примерно 10 молекул. Концентрация молекул в жидкости такая, как в газе под давлением 10 МПа. Поэтому проведение реакций в жидкой фазе с точки зрения соотношения скоростей моно- и бимолекулярных реакций равносильно проведению их в газовой фазе под высоким давлением. В результате при равных температурах жидкофазные термические реакции углеводородов и нефтепродуктов приводят к значительно большему выходу продуктов конденсации и меньшему выходу продуктов распада. На суммарный результат превращения углеводородов в жидкой фазе определенное влияние оказывают клеточный эффект и сольватация. При распаде молекулы углеводорода на радикалы в газовой фазе последние немедленно разлетаются. В жидкой фазе радикалы окружены клеткой из соседних молекул. Для удаления радикалов на расстояние, при котором они становятся кинетически независимыми частицами, необходимо преодолеть дополнительный активационный барьер, равный энергии активации диффузии радикала из клетки. С другой стороны, и для рекомбинации радикалы должны преодолеть клеточный эффект. В результате суммарная концентрация радикалов в жидкости останется такой же, как и в газовой фазе. Однако, если радикалы существенно различаются по массе и активности, то клеточный эффект может изменить стационарную концентрацию радикалов, что приведет к изменению энергии активации жидкофазной реакции относительно газофазной. [c.319]


    Не свободна книга и от некоторых недостатков. В частности, в ней нет даже упоминания о радиационно-термическом крекинге и радиационной изомеризации — проблемах, представляющих потенциальный прикладной интерес. Почти полностью отсутствуют данные по исследованию радиационных превращений углеводородов методом ЭПР. Быть может, в оправдание авторов можно заметить, что обойденные направления исследований связаны в основном с газовой и твердой фазами, а интересы авторов ограничиваются жидкофазными процессами. К сожалению, авторы не уделили внимания и радиационному окислению, в течение ряда лет изучаемому советскими учеными. [c.6]

    Б более глубокой зоне (до 2,5—3 км при температуре до 90—100—150 °С) направленность процесса термического превращения сапропелевого органического вещества принципиально изменяется. При незначительном изменении содержания углерода в керогене заметно снижается содержание водорода быстро и значительно возрастает и достигает максимума концентрация хлороформенного битумоида в целом, в том числе высокомолекулярных нефтяных углеводородов (С15—С45) образуются и достигают максимальной концентрации низкокипящие углеводороды бензиновых фракций (Се — Си)- В составе газовой фазы органического вещества достигает максимума концентрация гомологов метана (С2 — С5) содержание СН4 пока незначительно. [c.44]

    Высокотемпературный крекинг (670—720° С) нефтяного сырья, называемый пиролизом, проводится для получения газов, служащих исходным сырьем для органического синтеза и в том числе и для синтеза высокооктановых компонентов моторного топлива и различных жидких продуктов с высоким содержанием ароматических углеводородов. По температурному режиму пиролиз является наиболее жесткой формой термического крекинга и характеризуется более глубоким разложением, углеводородов нефти. Реакции при пиролизе в большинстве случаев, как правило, являются необратимыми, т. е. продукты первичного распада сразу же подвергаются дальнейшему превращению и не способны образовывать исходный продукт. Таким образом, пиролиз жидких углеводородов — многофазный высокотемпературный процесс, в котором разложение исходных углеводородов идет в гомогенной среде и в результате образуется газовая, жидкая и твердая фазы (кокс, сажа). На процесс пиролиза и выход продуктов влияют следующие факторы  [c.88]

    Пркпия 5. Термические превращения углеводородов в газовой фазе. Теоретические основы процесса пиролиза. [c.317]

    Как отмечалось выше, при контактном окислении реакция нередко выходит в объем между зернами катализатора, и некоторая часть исходного органического вещества и промежуточных продуктов подвергается гойогенным окислительным превращениям. В отсутствие гетерогенного катализатора состав продуктов гомогенного окисления углеводородов в газовой фазе в сильной степени зависит от температуры и концентрации кислорода. При относительно невысоких температурах (до 300 °С) и некотором избытке кислорода преобладают реакции мягкого окисления, сопровождающиеся образованием кислородсодержащих веществ. С повышением температуры усиливается деструктивное окисление в этих условиях кислородные производные с удовлетворительным выходом получают за счет сокращегния времени контакта. Выше 600 °С, особенно при недостатке кислорода, превалируют реакции окислительного распада- и дегидрирования. Механизм окислительной деструкции углеводородов в этих условиях хорошо согласуется с положением [4] о конкуренции бимолекулярных превращений промежуточных гидропере-кисных радикалов с термическими мономолекулярными реакциями распада. Закономерности и многочисленные примеры го-, могенного окисления подробно описаны в монографии [20]. [c.14]

    Крекинг нефти. Ввиду того что современные транспортные средства требуют все ббльших количеств бензина, в настоящее время широко применяются методы, при помощи которых более тяжелые нефтяные фракции (керосин, соляровые масла) или парафиновый мазут превращаются в бензин. Главными способами термического крекинга являются крекинг в газо-жидкостной и газовой фазах. Первый осуществляется при сравнительно низкой температуре 390—500° и достаточно высоком давлении для того, чтобы часть вещества оставалась в жидкой фазе (12—50 ат) при этом стремятся получить по возможности больший выход бензина и наименьший выход газа. По способу крекинга в газовой фазе работают при 500—600° и атмосферном или несколько повышенном давлении. Химические превращения углеводородов при такой переработке были описаны в предыдущей главе. Бензин крекинга отличается от бензина, полученного прямой перегонкой, содержанием алкенов, причем бензин, полученный способом крекинга в газовой фазе, обладает также повышенным содержанием ароматических углеводородов и поэтому имеет ббльшее октановое число. Крекинг в газовой фазе применяется главным образом в том случае, если интересуют газы крекинга, которые при этом способе образуются в ббльших количествах. Бензин крекинга рафинируется специальным образом для удаления более реакционноспособных диепов, меркаптанов и фенолов, образующихся в результате ряда различных побочных реакций. [c.400]



Смотреть страницы где упоминается термин Термические превращения углеводородов в газовой фазе: [c.30]   
Смотреть главы в:

Теоретические основы химических процессов переработки нефти -> Термические превращения углеводородов в газовой фазе

Химия нефти и газа -> Термические превращения углеводородов в газовой фазе

Химия нефти и газа -> Термические превращения углеводородов в газовой фазе

Химия нефти и газа -> Термические превращения углеводородов в газовой фазе




ПОИСК





Смотрите так же термины и статьи:

Газовая фаза

Термическая газовая саж



© 2024 chem21.info Реклама на сайте