Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Смолы пиролиза жидких углеводородов

    Смола пиролиза. Смолой пиролиза называют получаемые в процессе жидкие углеводороды от С5 и выше. Количество пиролизной смолы в основном зависит От сы])ья пиролиза, что видно из следующих данных  [c.206]

    Ароматические углеводороды накапливаются в жидких про — дуктах термолиза тем в больших количествах, чем выше температура процесса. При пиролизе они являются главной составной частью так называемой смолы пиролиза. [c.34]


    В настоящее время промышленность органического синтеза использует следующие основные виды сырья природные и попутные газы газообразные и жидкие углеводороды, получаемые при перегонке нефти, крекинге и пиролизе нефтепродуктов твердые парафиновые углеводороды и тяжелые нефтяные остатки коксовый и сланцевый газы смолу коксования, а также сланцевую и древесную смолу и торфяной деготь. Наша страна располагает громадными запасами нефти, природного и попутного нефтяного газа, представляющих собой наиболее экономичные виды сырья для химического синтеза. Использование нефтяного сырья для получения разнообразных продуктов представлено на рис. 63. Кроме того, для органического синтеза в больших количествах используются и неорганические соединения кислоты, щелочи, сода, хлор и т. п., без которых невозможно осуществление многих процессов. Как правило, любое сырье необходимо предварительно очистить от влаги, механических примесей, сернистых соединений и других п])имесей и разделить, выделив индивидуальные углеводороды. Таким образом получают очищенное сырье, из которого дальнейшей переработкой можно получить те или иные полупродукты и целевые продукты. [c.161]

    Бензины прямой перегонки являются прекрасным сырьем для производства ароматических соединений, а также этилена, пропилена и более тяжелых углеводородов методом пиролиза. Производство бензола, толуола и ксилола из узких бензиновых фракций (бензол из фракции 62—85°С, толуол — из фракции 85—110°С и ксилолы — из фракции 110—140 °С) экономически эффективно. Доля нефтяного сырья в производстве ароматических соединений непрерывно увеличивается. В перспективе фракция 62—85 °С почти полностью должна перерабатываться на бензол, однако удовлетворение потребности в этом важном продукте возможно только при привлечении дополнительных ресурсов, а именно путем деметилирования толуола и использования смолы пиролиза жидких фракций. [c.38]

    Многофазные процессы весьма характерны для химических производств. Многие химико-технологические процессы происходят с участием нескольких фаз. Можно привести бесчисленное множество примеров многофазных процессов, применяемых в промышленности. В качестве типичных многофазных технологических процессов можно назвать, например, выплавку чугуна и стали в металлургии, где участвуют твердые, жидкие и газообразные фазы, карбонизацию аммиачно-солевого раствора в производстве соды, где при взаимодействии газовой и жидкой фаз образуется твердая (бикарбонат натрия), образование двух жидких фаз (смолы и воды) при охлаждении коксового газа, образование газа и твердого остатка при пиролизе жидких углеводородов и т. д. [c.123]


    Пиролиз прямогонного бензина, сжиженных газов и некоторых других нефтяных фракций осуществляют в большом масштабе с целью получения низших олефинов — этилена, пропилена и бути-ленов. Установлено, что в присутствии водорода пиролиз протекает более эффективно [13]. В процессе пиролиза наряду с газом получаются жидкие продукты — смола пиролиза. Легкие фракции смолы пиролиза используются для получения компонента высокооктанового бензина, а также для получения бензола. Во фракциях смолы пиролиза, выкипающих до 180 °С, содержатся ароматические углеводороды — бензол, толуол, ксилолы, непредельные ж диеновые углеводороды. [c.18]

    Изучен процесс полимеризации непредельных соединений легкого масла и смолы пиролиза нефтяных углеводородов с помощью жидкого и парообразного фтористого водорода. Разработана техно- логическая схема процесса. [c.154]

    Из достаточно однородной жидкой смеси углеводородов (нефтепродукта или каменноугольной смолы) пиролизом получают. ЕД водородные газы и жидкие углеводороды различного молекулярного веса. Тяжелый остаток представляет,собой пек или кокс, содержащий более 95% углерода. Углеводородный газ, который со-дб р/кит соединения низкого молекулярного веса, можно, нагревая, конвертировать и получать при этом еще некоторое количество жидких углеводородов и смол относительно высокого молекулярного веса. Одновременно образуются более простые углеводороды, кокс и водород. [c.295]

    Энергетический кризис, относительно ограниченные ресурсы нефти и газа повысили интерес к расширенному использованию угля для производства жидких и газообразных топлив и химического сырья [12]. Однако головные установки для получения жидких топлив из угля появятся не ранее 1985 г. До 1985— 1990 гг. серьезных изменений в структуре сырьевой базы производства ароматических углеводородов не ожидается и, вероятно, до конца XX в. ведущее положение в производстве сырья для ароматических углеводородов по-прежнему будет занимать нефть. Коксохимическая промышленность остается источником значительных абсолютных количеств бензола, одним из основных источников нафталина и пока единственным источником конденсированных ароматических углеводородов — антрацена, фенантрена, пирена и др. Развитие пиролиза открывает возможности получения нафталина и других конденсированных ароматических углеводородов из тяжелых смол пиролиза. [c.147]

    Продукты реакции и теплоноситель из прямоточного реактора поступают в сепаратор 5, где теплоноситель отделяется от продуктов реакции и возвращается снова в псевдоожиженный слой нагревателя 21. Продукты реакции, освободившись от остатков теплоносителя в циклоне реактора 6( поступают в закалочный аппарат 7 для охлаждения до 350—400° С и далее в скруббер 9 для отделения сконденсировавшейся тяжелой смолы пиролиза, выводимой насосом Н-1 снизу скруббера 9 через холодильник 15 в емкость 16. Часть смолы насосом Н-1 подается на закалку продуктов реакции через форсунку в закалочный аппарат 7. Газы пиролиза, несконденсировавшаяся часть легкой смолы и водяной пар сверху скруббера 9 поступают в скруббер 10, орошаемый легкой смолой пиролиза, в котором охлаждаются до 80—90° С, в результате чего конденсируются легкая смола пиролиза и водяные пары. После отделения воды легкая смола через холодильник 14 отводится в емкость 13. Газы пиролиза, содержащие небольшое количество легких жидких углеводородов, из скруббера 10 поступают в холодильник И, где охлаждаются до температуры 35—40° С, и далее поступают в газосепараторы 12. В газосепараторах происходит отделение головки смолы пиролиза, которая отводится в емкость 13. Газы пиролиза из сепараторов отводятся через расходомер на переработку. [c.109]

    С ужесточением режимов контактного пиролиза в составе жидких продуктов реакции наблюдается увеличение содержания ароматических углеводородов. Из данных табл. 48 видно, что с повышением температуры пиролиза от 725 до 825° С концентрация моноядерных ароматических углеводородов (бензола, толуола и ксилолов) в легком масле возрастает с 22 до 53% по массе, а выход их по сырью достигает всего лишь 3—5%, что в 1,5—2 раза ниже, чем при пиролизе нефти месторождения Остров Песчаный . Невелико также содержание более высокомолекулярных ароматических углеводородов (нафталина, дифенила и др.) в высоко-кипящих фракциях смолы пиролиза. Во фракции 200— 350° С (табл. 49) содержание ароматических углеводородов не превышает 49,4% при температуре контактного пиролиза 825° С. [c.132]

    Крекинг ароматических углеводородов. Ароматические углеводороды наиболее термически устойчивы. Поэтому они накапливаются в жидких продуктах крекинга тем в больших количествах, чем выше температура процесса. При пиролизе ароматические углеводороды являются главной составной частью так называемой смолы пиролиза. [c.180]


    Из данных табл. 97 следует, что, начиная с 700°, количество образующегося нри пиролизе жидкого конденсата (смолы) становится примерно постоянным, а содер/кание ароматических углеводородов все увеличивается. При 700 фракции с температурой кипения бензола и толуола примерно на 70% состоят из ароматических углеводородов (остальная их часть состоит из алифатических и алициклических углеводородов). При 800 содержание [c.107]

    Углеводородные газы служат сырьем для получения технического углерода издавна, несмотря на высокое отношение в них Н С (от 2,5 до 4,0). Их можно применять в качестве технологического топлива или в качестве технологического топлива и сырья в производствах саж. В последнем случае получают газовую, печную и термическую сажу. Доля сажи, изготовляемой нз углеводородных газов, пз года в год сокращается за счет увеличения доли саж, вырабатываемых пз жидкого сырья. Жидкие нефтяные фракции для производства саж используют сравнительно недавно (15—20 лет) доля жидких нефтяных фракций в настоящее время составляет более 70% от всего количества сырья она имеет тенденцию к увеличению. Из различных видов жидкого сырья предпочтение отдается газойлю термического и каталитического крекинга, а. также экстрактам, полученным на основе ароматических концентратов (содержание ароматических углеводородов не менее 80—85%) В последнее время начинают вовлекать в производство сажи также смолу пиролиза. Выход сажн из сырья пропорционален его индексу корреляции Ик (см. с. 146) с его увеличением выход сажи растет. Индекс корреляции сырья для производства саж составляет около 100 в настоящее время ведутся работы для увеличения его до 120 и более. [c.221]

    Жидкие продукты пиролиза делят на бензиновую фракцию и фракцию, выкипающую выще 200°С (смолы). С повышением температуры и длительности процесса пиролиза увеличивается соотношение выходов смолы пиролиза бензиновые фракции, одновременно в этих фракциях возрастает содержание ароматических углеводородов. Так, при повышении температуры пиролиза с 750 до 800 °С это соотношение в случае использования в качестве сырья бензинов изменяется в пределах 0,3—0,5, а в случае более тяжелых фракций — от 1,2 до 1,5. [c.226]

    Жидкие продукты пиролиза, содержащие значительные количества ароматических углеводородов, используют в качестве компонентов товарных бензинов кроме того, из них извлекают ароматические углеводороды (например, нафталин). Иногда смолы пиролиза добавляют в котельные топлива. Однако более рационально использовать тяжелые смолы, выкипающие выше 200 °С и содержащие в больших количествах би- и полициклические ароматические углеводороды, в качестве сырья для производства коксов игольчатой структуры, сажи и пеков с различными температурами размягчения. [c.226]

    Жидким продуктам крекинга свойственно присутствие непредельных и ароматических углеводородов. При средней глубине процесса крекинг-бензины обладают невысоким октановым числом (60 —65) с углублением процесса концентрация ароматических углеводородов возрастает, поэтому октановое число повышается бензин, получаемый термическим риформингом лигроина, имеет октановое число 70—72, а бензин, выделенный из смолы пиролиза, имеет октановое число 80 и выше. Йодные числа типичных бензинов, образующихся при термическом крекинге под давлением и коксовании, довольно высоки (80—100 г Ь на 100 г). [c.72]

    Первичные парогазовые продукты можно условно разделить на три части газ полукоксования, пары воды и пары жидких углеводородов, которые при охлаждении образуют первичную смолу. Пары воды могут оказывать влияние на ход пиролиза, но сами в химических превращениях углеводородов вряд ли участвуют. Газы полукоксования содержат компоненты, которые легко подвергаются пиролизу тяжелые углеводороды и метан. Однако их количество в парогазовой фазе по массе, в сравнении со смолой, в 50-70 раз меньше, а степень превращения в твердые и жидкие продукты ничтожно мала. Главным компонентом, определяющим ход и результаты пиролиза парогазовой фазы, является первичная смола. Газ является активной средой, в которой протекают вторичные процессы пиролиза. Поэтому целесообразно изучить отдельно [c.139]

    В настоящее время основным процессом получения низших олефинов является пиролиз углеводородного сырья, главной целью которого является производство этилена. Одновременно при пиролизе получают другие олефины — пропилен, бутилены и бутадиен. В этом же процессе образуются жидкие продукты (смола пиролиза), которые содержат и другие ценные углеводороды, такие как изопрен, циклопентадиен, бензол, толуол, ксилолы, стирол и нафталин. [c.351]

    С целью устранения вышеуказанных недостатков и повышения эффективности процессов переработки жидких продуктов пиролиза нами рекомендуется смолу пиролиза перед стадиейректифика-ции подвергать каталитической полимеризации известными методами (например, в присутствии хлористого алюминия) незаполиме-ризовавшиеся углеводороды отделять от полимерных смол отгонкой с водяным паром и использовать в дальнейшем для выделения из них ароматических углеводородов известными способами (например, гидрированием на алюмокобальтмолибденовом катализаторе в одну ступень с последующей экстракцией ароматических углеводородов различными растворителями) полученная при этом полимерная смола может быть использована для производства синтетических или полусинтетических олиф. [c.151]

    Приведенные сопоставительные характеристики состава тяжелых смол пиролиза газообразного сырья, бензина прямой перегонки и атмосферного газойля (табл. 23) указывают на ухудшение качества тяжелых смол для атмосферного газойля [180]. По содержанию ароматических углеводородов, асфаль-тенов и смол предпочтительным являются тяжелые фракции жидких продуктов пиролиза бензиновых фракций. [c.64]

    В процессе пиролиза жидких углеводородов получается определенное количество смол. Как показали проведенные работы, эти смолы содержат значительное количество непредельных и алкенилароматических углеводородов и могут служить хорошим сырьем для производства синтетических полимерных материалов. [c.373]

    Распад на элементы — не единственная реакция пиролиза метана. Сокращением длительности нагревания и регулированием скорости oxJ[aждeния продуктов реакции из метана можно получить также газообразные и жидкие углеводороды. При 850— 1200 С, пропуская метан с большой скоростью через нагретые фарфоровые и кварцевые трубки, получают конденсат, содеря<а-щий непредельные углеводороды, бензол, толуол, нафталин и тяжелую смолу, содержащую высшие ароматические углеводороды. В газообразных продуктах обнаруживают этилен, ацетилен и бутадиен. Некоторые катализаторы (SiOj, W, Mo, Sn) ускоряют эпу реакцию, другие (железо, графит) — замедляют. Максимальный выход олефинов наблюдается при температурах до 1000 °С, ароматических углеводородов — при 1000—1200 С, а ацетилена — при 1500 С. Образование всех этих продуктов объясняют возникновением нри высоких температурах кратковременно су1цествующих свободных радикалов, например метиленового радикала Hg  [c.411]

    За степень конверсии сырья целесообразно принять отногненис суммы весов газообразных продуктов и ароматических углеводородов, содержащихся в смоле, к весу сырья. Одако вследствие сложности состава исходных жидких углеводородных фракций и смолы пиролиза, а также трудности аналитического определения компонентов жидких углеводородных фракций при данном расчете. ча степень конверсии сырья принимают газообразование, т, е, выход газа в вес. % от пропущенного сырья при температуре конденса ции жидких продуктов пиролиза (—10°С). [c.90]

    Жидкие продукты выделяются при очистке и фракционировании газов пиролиза в нескольких узлах технологической схемы. Вначале при охлаждении газа водой или тяжелой смолой выделяется пиролизная смола. При сжатии газа в компрессорах с последующим охлаждением выделяется так называемый межступенча-тый конденсат — легкая смола пиролиза (или пиролизный бензин, П фоконденсат), который включает жидкие компоненты, выкипающие до 180—200°С. Из ароматических углеводородов здесь сосредоточиваются в основном углеводороды бензольного ряда в первую очередь бензол. В зависимости от состава сырья и условий процесса количество бензольных углеводородов при пиролизе может составлять от 1,5 до 45% по отношению к получаемому этилену, в том числе бензола от 20 до 25%. [c.183]

    Пиробензол является продуктом пиролиза нефтяного сырья. Основное назначение процесса пиролиза — получение газообразных олефинов (этилена, пропилена, бутадиена и бутилена) для нефтехимического синтеза. Пиролизу могут подвергаться углеводородные газы, бензиновые и керосино-газойлевые фракции. Процесс пиролиза проводится на установках, основным агрегатом которых является трубчатая печь. Прямогонная бензиновая фракция, используемая в качестве сырья, нагревается в печи до 750°С, при пиролизе пропана его нагревают до 900°С. В результате термического разложения сырья образуются низкомолекулярные олефины, а также высокоароматизированные жидкие продукты — смола пиролиза и кокс. Количество смолы зависит от сырья, чем оно тяжелее, тем больше смолы. В случае пиролиза бензина или керосино-газойлевой фракции выход смолы составляет 20н-35% [9]. Смола пиролиза содержит много диеновых и олефиновых углеводородов и на 70+75% состоит из фракций, выкипаюших до 200°С. Переработка смолы пиролиза может осуществляться по топливному или химическому варианту. В первом случае смола разделяется на легкую (выкипающую до 180°С) и тяжелую части. Для получения пиробензола легкая часть гидрируется для удаления непредельных углеводородов, и из нее выделяется бензол. [c.39]

    В качестве искового сырья могут быть рассмотрены смолы пиролиза как газов, так и жидких нефтепродуктов. Тяжелая смола — смесь конденсированных алкил- и алкенилароматических углеводородов с двумя и более циклами, олигомеров алкенилароматических углеводородов и некоторого количества асфальтенов и других высокомолекулярных соединений. Большая часть углеводородов тяжелой смолы выкипает выше 200°С. Из-за нечеткости ректификации эта смола содержит и углеводороды с температурой выкипания до 200°С. [c.183]

    В 1997 г институтом ВНИИОС совместно с НИИграфит по заданию Минатома РФ были разработаны исходные данные ддя ТЭО установки мощностью 2,5 тыс.т/год по получению кокса марки КНПС на Томском нефтехимическом комбинате на основе новых технических решений из альтернативного сырья - смеси фракций газового конденсата Уренгойского месторождения с добавкой керосино-газойлевой фракции малосернистой нефти. Установка базировалась на процессе пиролиза этиленового производства с получением тяжелых смол пиролиза бензиновой и дизельной фракции, а также фракции, выкипающей выше 200 С, с их дальнейшим коксованием с получением коксов марок КНГ, КЗК с направлением на пиролиз дистиллата коксования. В дальнейшем по традиционной схеме осуществляется двухстадийный процесс пиролиз-коксование в кубах. В процессе пиролиза протекает пиролитическая ароматизация исходного сырья с получением смолы, направляемой на коксование. В состав установки пиролиза входит печь пиролиза, реакционная камера, гидравлик и система выделения отдельных фракций, таких как легкое масло и зеленое масло. В пиролизной печи происходит разложение углеводородного сырья при 690-710 С с образованием пирогаза, содержащего низшие олефины и диеновые углеводороды, жидких продуктов, состав которых характеризуется высоким содержанием ароматических, алкенил- ароматических и конденсированных соединений. В реакционной камере происходит полимеризация, конденсация и уплотнение продукгов первичного распада сырья с образованием компонентов целевой смолы для процесса коксования, таких как полициклические ароматические соединения, асфальтены и карбоиды. Время пребывания потока в реакционной камере составляет 20-30 сек. За счет протекания экзотермических реакций уплотнения температура в [c.143]

    Интенсивные превращения в интервале температур 300-360°С в карбонизуе-мом сырье подтверждаются резким увеличением коксуемости получаемых пеков, а также увеличением выхода дистиллятов и газообразных продуктов. Образование карбеновых и карбоидных структур характеризуется тем, что молекулы асфальтенов вступают в реакции термической дегидрополиконденсации между собой или с молекулами смол и полициклических ароматических углеводородов с образованием высокомолекулярных соединений. Эта реакция может протекать как на поверхности раздела фаз, когда дисперсной фазой являются образующиеся карбеновые и карбоидные структуры, так и в дисперсионной среде. На основании проведенных экспериментов была предложена пос/ едовательность превращений в процессе термолиза остаточного нефтяного сырья. На ранних стадиях термолиза в реакционной массе образуются в основном продукты внутримолекулярного взаимодействия, способные к физическому агрегированию, в большей степени по мере понижения растворяющей способности дисперсионной среды. С увеличением температуры термообработки и времени изотермической выдержки в системе накапливаются высокомолекулярные соединения, обладающие ограниченной растворимостью в более низкомолекулярной части реакционной среды и выделяющиеся из нее в виде анизотропной жидкой фазы, обладающей высокой склонностью к межмолекулярным взаимодействиям. Дальнейшее протекание процесса сопровождается переходом физических связей у образовавшейся фазы в химические, что приводит к образованию новых структур — карбенов и карбоидов. Этот переход не происходит аддитивно с накоплением карбоидов в реакционной массе и носит экстремальный характер. Интенсивный рост содержания карбенов и карбоидов начинается после некоторой, достигнутой в процессе термолиза пороговой концентрации асфальтенов. Изменение параметров процесса позволяет получать пеки из смол пиролиза нефтяного происхождения, существенно различающиеся по содержанию асфальтенов, карбенов, карбоидов, элементному составу, зольности, коксуемости и температурам размягчения. Таким образом, создается возможность регулирования качества получаемых пеков и их подбора при использовании для производства различных углеграфитных материалов. [c.133]

    А. содержится в жидких продуктах переработки сланцев н табачном дыме, в небольших кол-вах-в кам.-уг, смоле и тяжелой смоле пиролиза углеводородов в произ-ве этилена. В пром-сти его получают дегидрированием смеси паров аценафтена с воздухом или с инертными разбавителями прн 300-600 °С и атм. давлении в присут. катализатора, напр. А]20з (90%) с МП2О3 (10%) выход 80-95%. Чистота техн. А, 95-96% по массе. Препаративно А. получают сплавлением ацеиафтеи-3- или аценафтен-5-сульфокнслоты со щелочью. Определяют А. по кол-ву поглощенного Hj при гидрировании его до аценафтена в присут. Ni Ренея, а также полярографич. методом. [c.222]

    ПИРбЛИЗ НЕФТЯНОГО СЫРЬЯ, процесс деструктивного превращ. углеводородов нефти при высоких т-рах (обычно вьппе 650-700 °С) в газообразные (пирогаз) и жидкие (смола пиролиза) продукты. Деструктивные процессы при т-рах до 600 °С имеют самостоят. значение (см., напр., Висбрекинг, Крекинг, Коксование). [c.535]

    Наличие таких углеводородов, как нафталин и его гомологи, бифенил, аценафтен, флуорен, фенантрен и антрацен, превращает тяжелые смолы пиролиза в объект научных исследовании и опытных отработок по извлечению многих из них. Состав жидких продуктов пиролиза нефтяных фракций, характеризующийся высоким содержанием ароматических углеводородов Сб—Са, алкенилароматических соединений Са—Сд, диенов [c.64]

    Аналогичное образование метана наблюдается при пиролизе три-(2-метилпентил)-алюминия А1[Н2ССН(СНз)СзН7]з (полученного из димерного пропилена ). Вместо желтого, труднорастворимого твердого вещества образуется желтая не поддающаяся перегонке смола, которая растворена в образовавшихся одновременно жидких углеводородах. Углеводороды можно удалить путем перегонки. Оставшаяся смола дает при гидролизе метан. [c.263]

    Процесс пиролиза углеводородного сырья сопровождается получением жидких продуктов пиролиза (ЖПП), которые разделяются на пирокондеисат (фракция > 200 °С) и тяжелую смолу пиролиза (> 200 °С) и имеют в своем составе различные классы соединений — ароматические и другие конденсированные циклические углеводороды бензол, нафталин, аценафтен, флуорен, фенантрен, антрацен и их метилпроизводные. Кроме того, в ЖПП присутствуют ациклические и алициклические диены (изопрен, циююпентадиен, пипери-лен и др.), алкены, винилароматические углеводороды (стирол, метилстиролы), инден и его алкилпроизвод-ные, а также примеси алканов и нафтенов. На основе ЖПП получены толуол, ксилолы, растворители, высокооктановые компоненты моторных топлив, нефтеполимерные смолы, нафталин, технический углерод, кокс и др, продукты. [c.815]

    Пиролиз является наиболее жесткой, формой термического крекинга в отношении температурного режима температуры пиролиза лежат в пределах 650—750° давление при пиролизе обычно близко к атмосферному. Жесткий температурный режим пиролиза и низкое давление обусловливают значительный выход газа, достигающий 50% на сырье, и высокую степень ароматизации жидких продуктов пиролиза так называемая смола пиролиза содержит как однокольчатые ароматические углеводороды — бензол, толуол, ксилолы, так и многокольчатые — нафталин, антрацен. [c.174]


Смотреть страницы где упоминается термин Смолы пиролиза жидких углеводородов: [c.210]    [c.33]    [c.59]    [c.220]    [c.68]    [c.99]    [c.243]   
Общая химическая технология топлива (1941) -- [ c.678 , c.679 ]




ПОИСК





Смотрите так же термины и статьи:

Жидкие углеводороды пиролиз

Углеводороды смолы



© 2025 chem21.info Реклама на сайте