Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Органические вещества, исследование структуры

    Комплексные соединения составляют наиболее обширный и разнообразный класс неорганических веществ. К ним принадлежат также многие элементоорганические соединения, связывающие воедино ранее разобщенные неорганическую химию и органическую химию. Многие комплексные соединения — витамин В12, гемоглобин, хлорофилл и другие — играют большую роль в физиологических и биохимических процессах. Исследование свойств и пространственного строения комплексных соединений оказалось чрезвычайно плодотворным для кристаллохимии, изучающей зависимость физико-химических свойств веществ от структуры образуемых ими кристаллов, и породило новые представления о природе химической связи. К ценным результатам привело применение комплексных соединений и в аналитической химии. [c.354]


    ЯДЕРНЫЙ МАГНИТНЫЙ РЕЗОНАНС (ЯМР) — метод исследования структуры неорганических и органических веществ, в основе которого лежит резонансное поглощение электромагнитных волн веществом в постоянном магнитном поле, обусловленное ядерным магнетизмом. Я- м. р. является одним из новейших методов исследования открыли его в 1946 г. независимо друг от друга две группы американских физиков. [c.297]

    ЧТО огромное разнообразие веществ растительного и животного происхождения образовано весьма небольшим числом химических элементов (углерод, водород, кислород, азот и некоторые другие). К тому же, при одинаковом составе вещества имеют разные свойства. Это означало, что свойства веществ зависят не только от состава, но и от структуры. Если при зарождении химии как науки главным направлением был химический анализ, то с появлением структурной химии — органический синтез. Сегодня структурная химия строится на квантовомеханических представлениях о химической связи, строении молекул и кристаллов, на методах исследования структуры веществ, изучении влияния структуры на свойства веществ и пр. [c.6]

    Как указывалось выше, теория химического строения А. М. Бутлерова установила, что каждая органическая молекула имеет строго определенную структуру, и указала химические методы, с помош,ью которых можно установить строение молекул. Химические методы исследования структуры были разработаны также для определения строения комплексных соединений — одного из важных классов неорганических веществ (см. стр. 215—216). С помош,ью химических методов было определено строение огромного количества вещ,еств  [c.123]

    Для систематического изучения состава и строения органического вещества твердых топлив вначале использовались главным образом методы органической химии, отчасти коллоидной химии, с привлечением данных, полученных геологией и микробиологией. Химия и физика высокомолекулярных соединений и угольная петрография в этот период только начинали оформляться в качестве самостоятельных разделов науки. Еще недостаточно были развиты физико-химические и чисто физические методы исследования. В этот период объектом исследования преимущественно являлись торфы, бурые угли, горючие сланцы, сапропелиты, растения-угле-образователи и продукты полукоксования этого твердого топлива. Каменные угли из-за большого разнообразия и очень сложной структуры были изучены слабее. [c.5]

    Изучение состава, строения химических реакций и свойств гетероорганических соединений нефти особенно важно для решения такой принципиальной научной проблемы, как генезис нефти. Именно среди гетероорганических компонентов нефти встречаются соединения, в разной степени приближающиеся к соединениям чисто углеводородного характера, которые, вероятно, являются отдельными звеньями длинной цепи химических превращений, соединяющей нефть с органическим веществом растительного и животного происхождения, из которого эта нефть образовалась. Чем больше звеньев в этой цепи удастся расшифровать при помощи современных экспериментальных методов, тем ближе мы подойдем к раскрытию и правильному пониманию геохимической истории многообразных химических превращений в недрах земных от органического вещества растительного и животного происхождения до нефти. Наиболее простые по химическому составу кислород- и серусодержащие соединения являются, но-видимому, одной из последних (если не самой последней) ступенью в ряду этих превращений. Так, содержащиеся в нефтях карбоновые кислоты и сернистые соединения, как показали многочисленные экспериментальные исследования, имеют такую же или очень близкую структуру углеводородной части молекулы, как и углеводороды соответствующих фракций тех же нефтей. [c.303]


    Реакции обнаружения молекул. Методы обнаружения неорганических и органических веществ различаются, поскольку в первом случае почти всегда используют ионные реакции, во втором — в основном молекулярные. Реакции между ионами протекают в большинстве случаев быстро и однозначно, реакции между молекулами часто идут медленно, не полностью и сопровождаются побочными реакциями (ср. стр. 46). Это обстоятельство, а также очень большое число соединений, с которыми имеют дело в органической химии, нередко мало отличающихся по свойствам (гомологические ряды), делают обнаружение и исследование органических веществ несравненно более трудной аналитической задачей, чем неорганических соединений. Задача качественного органического анализа чаще всего заключается в установлении идентичности неизвестного вещества с уже известным соединением или в выяснении природы нового неизвестного соединения. Несмотря на то что в случае органических веществ иногда и имеют дело с ионами, последние, за малыми исключениями, обладают сложной структурой, и поэтому такие простые ионные реакции, как в неорганическом анализе, для них становятся едва ли возможными. [c.56]

    ЖИДКИЕ КРИСТАЛЛЫ — термодинамически устойчивое состояние веще-стпа, промежуточное по своим свойствам между жидким состоянием и кристаллическим. На диаграмме состояния Ж- к. всегда имеют четкую замкнутую область устойчивого существования. Известно около 3000 органических веществ, способных к образованию Ж- к. Молекулы этих веществ имеют удлиненную форму, а наличие боковых ответвлений сокращает область существования Ж. к. Для Ж. к. известны две структурные формы существования 1) нематическая форма, при которой молекулы вытянуты параллельно друг другу, и 2) смектическая форма, в которой молекулы образуют слои, располагаясь перпендикулярно к плоскости этих слоев. Некоторые коллоидные системы, например водные растворы мыл, дают образования типа Ж. к., называемые лиотропными. По мере увеличения количества растворителя система становится сначала смектической, затем нематической и, наконец, переходит в изотропную жидкость. В смектических мыльных растворах молекулы мыла образуют двойные слои, обращенные полярными группами к воде, выполняющей роль прослойки между этими двойными слоями. Наличие такой структуры объясняет моющее действие мыльных растворов. Исследование Ж- к. имеет важное значение для теории строения вещества и представляет большой интерес для техники, био-логин медицины. [c.97]

    Эта теория объяснила многообразие органических веществ. А. М. Бутлеров показал, что внутренняя структура молекул познаваема, доступна для сознательного воспроизведения. Изучая химические превращения, на основе теории А. М. Бутлерова можно установить строение молекул эта теория указала химические методы исследования строения вещества. Например, для молекулы этилового спирта СгНбО с учетом валентности элементов можно предположить два варианта структуры  [c.57]

    С этой целью разработаны специальные методы анализа и исследования органических соединений, с помощью которых можно судить о качественном и количественном составе и, самое главное, об их химической структуре. Для получения полной информации о составе и строении органических веществ наряду с аналитическими (классическими) методами анализа применяют и специальные — физико-химические (инструментальные) методы исследования. [c.31]

    Структурные теории твердого тела — только что появившаяся область знаний. Иногда ее называют химией твердого тела , химией твердого состояния , но она, с другой стороны, является также и физикой твердого тела, так как в основном оперирует физическими понятиями и использует физические методы исследования. Это одно из наиболее перспективных направлений развития структурной химии, ибо оно обещает стать реальной основой неорганического синтеза. До сих пор неорганическая химия, подобно органической химии, основывалась на атомно-молекулярпом учении. Но это было грубой идеализацией, так как в отличие от органических веществ подавляющее большинство неорганических соединений представлено не совокупностями молекул, а реальными кристаллами. Неорганическая химия поэтому не имела таких успехов в синтезе химически индивидуальных веществ, каких достигла органическая химия она успешно решала задачи синтеза лишь тех соединений, которые существуют в форме совокупности молекул, например синтеза аммиака. Получение же оксидов, сульфидов, селенидов и многих других солей, а также интерметаллических соединений осуществлялось отнюдь не по принципу синтеза запроек-гироваиных структур, как это было в органическом синтезе, а по принципу стехиометрии, т. е. не в русле структурной химии, а в русле учения о составе — на уровне первой концептуальной системы. [c.99]

    Из физико-химических (инструментальных) йй-бдов исследования, применяемых для установления молекулярной структуры органических веществ, наиболее часто используются оптическая спектроскопия (в ультрафиолетовой, видимой и инфракрасных областях спектра), спектроскопия ядерного магнитного резонанса (ЯМР), хроматография, метод дипольных моментов молекул, рентгеноструктурный анализ, молекулярная масс-спектроскопия и др. С помощью этих методов получают ценную информацию о взаимном расположении атомов в молекуле, их взаимовлиянии, внутримолекулярных расстояниях, поляризуемости связей, валентных углах и распределении электронной плотности и т. д. [c.123]


    Для изучения свойств и структуры твердых органических веществ иногда используется метод предварительного растворения. Он применяется и при исследовании твердых топлив и их составных частей. Стадников [1, с. 128] писал Анализ углей по растворимости — первая стадия всестороннего исследования углей, которое приведет к более глубокому пониманию состава, а следо- [c.136]

    Такое положение несколько напоминает то, которое создалось в теории строения органических веществ, когда определенное химическое соединение рассматривалось как суперпозиция сосуществующих- динамических промежуточных структур, обнаружение которых из-за ничтожно малой продолжительности жизни их представлялось невозможным. Вследствие этого указанные структуры были в теории строения на положении чисто виртуальных построек, относящихся к приему исследования. Казалось странным, что при помощи взаимодействия этих, можно сказать, чисто эфемерных структур, выражающегося в явлении резонанса, можно описать свойства реальной молекулы. [c.43]

    Рентгеноструктурный анализ. Он применяется при исследовании структуры кристаллов, жидкостей и аморфных тел. В то же время рентгеноструктурный анализ — основной метод установления структуры кристаллических решеток твердых тел. Неорганическая и органическая кристаллохимия главным образом обязана результатам рентгеноструктурного анализа неорганических и органических веществ. В зависимости от цели и особенностей объекта исследования для получения дифракционной картины используют непрерывное тормозное или дискретное характеристическое излучение в том или ином методе рентгеноструктурного анализа (РСА). Исследование кристаллической структуры различными методами РСА позволяет определить размеры и симметрию элементарной ячейки, а также расположение атомов и молекул в твердом теле. [c.195]

    Так, следует отметить, что современные теории двойного электрического слоя носят феноменологический и полуэмпирический характер. Вместе с тем уже накопился значительный экспериментальный материал, объяснение которого требует рассмотрения структуры поверхности на молекулярном уровне. Такой подход необходим для более детального описания адсорбции органических веществ на электродах, а также для объяснения ряда особенностей структуры поверхностного слоя и в отсутствие органических веществ. Попытки создания молекулярных теорий двойного слоя уже предпринимались. Однако эти теории еще далеки от совершенства. Другой важной проблемой является построение количественной теории поверхностного слоя при хемосорбции ионов, сопровождающейся переносом заряда. Явления переноса заряда при адсорбции широко распространены и играют существенную роль в кинетике электродных процессов. Часто на поверхности электрода находится хемосорбированный кислород (или кислород в другой форме), который сильно влияет на строение поверхностного слоя и скорость электрохимических процессов. Поэтому количественное исследование строения двойного электрического слоя и электрохимической кинетики на окисленных поверхностях представляет собой одну из важнейших проблем кинетики электродных процессов. [c.389]

    Представляет интерес оценка вклада поверхностных оксидов углеродных адсорбентов в общую величину энергии адсорбции, т. е. выявление роли химической природы поверхности в молекулярной адсорбции органических веществ из водных растворов. При исследовании адсорбции на углеродных адсорбентах и при практическом использовании адсорбции органических веществ из водных растворов не меньшее значение имеет оценка и учет пористой структуры углеродных адсорбентов. [c.74]

    За последние десятилетия неорганическая химия значительно изменилась качественно и количественно. Экспериментальные методы исследования структуры и квантовохимические расчеты позво- лили выяснить расположение атомов и природу химической связи в очень многих соединениях. Достижения химии координациоипых соедпнений, разработка новых методов неорганического синтеза (особенно реакций в неводных средах), исследование плазмы привели к открытию огромного числа новых веществ. Если раньше считали что неорганическая химия, в отличие от органической, бедна соединениями, то теперь положение коренным образом из менилось. [c.295]

    Читая работы классиков органической химии, невольно обращаешь внимание на то, с какой тщательностью и любовью описывают они полученные органические вещества, сколько внимания уделяют в этих описаниях очистке и характеристике веществ. В современных работах эта часть выглядит суше и лаконичнее для каждого вновь полученного вещества принято приводить данные его элементного анализа, брутто-формулу приводят также точки плавления и кипения, для жидкостей — показатель преломления. На основании данных, получаемых с помощью современных физико-химических методов исследования (оптических спектров, ядерного магнитного резонанса, масс-спектрометрии и др.), обычно удается составить представление о структуре вещества, не прибегая к классическим химическим методам установления строения, т. е. к постепенной деградации сложного вещества и исследованию получающихся при этом осколков. Такое описание создает зачастую у начинающего химика ложное представление, что современные методы исследования избавляют его от необходимости тщательной химической работы (прежде всего имеется в виду чистота препарата), чго эти новые методы якобы сами по себе способны дать правильный ответ. Изучающему химию важно внушить с самого начала, что современные методы исследования не исключили тщательности в его работе, а, наоборот, подняли требования к чистоте, индивидуальности органического вещества. Многие препараты, полученные по старым методикам и в свое время описанные как индивидуальные — при исследовании, например, методами хроматографии,— оказываются смесями. Между тем правильный анализ, точная температура плавления, правильная спектральная характеристика — все это может быть получено только при работе с хими- [c.354]

    Изучение структуры природных продуктов имело большое значение для развития органической химии, потому что в значительной степени содействовало развитию стереохимических представлений о сложных органических молекулах и стимулировало необычайно быстрый рост применения физических методов исследования структуры (прежде всего спектроскопических методов). Кроме того, при изучении структуры природных продуктов совершенствовались методы органического синтеза. Здесь следует подчеркнуть крупный вклад чехословацких химиков в области исследования природных веществ. [c.178]

    При исследовании органических веществ химик-аналитик чаще всего сталкивается с тремя аналитическими задачами а) установление химического состава и структуры нового органического соединения (синтезированного или выделенного из природных материалов) б) идентификация неизвестного соединения в) определение содержания основы или примесей в веществе известного состава. Эти задачи могут быть решены как химическими, так и инструментальными методами. Разделение и анализ смесей органических веществ химическими методами обычно не проводят ввиду трудоемкости. Для этой цели подходят физические и физико-химические методы хроматографические, инфракрасная спектроскопия, масс-спектрометрия и др. [c.207]

    Углеводы, или сахара, представляют собой обширный класс природных органических соединений, составляющий основную массу органического вещества нашей планеты. С представителями углеводов человек сталкивается в самых различных областях своей деятельности и при изучении самых различных живых объектов. Только по химии углеводов (не считая биохимии) сейчас публикуется в среднем полторы-две тысячи работ в год. Охватить этот материал в рамках небольшой книги, разумеется, невозможно. Мы сконцентрируем внимание на фундамента ь-ных вопросах структуры углеводных молекул и лишь очень кратко остановимся на синтетических проблема,х этой области, так как синтезу будет посвящена специальная книга. Наша задача — кратко описать современное состояние исследований в области углеводов. Ц понятие современное состояние мы вкладываем не только и не столько самоновейшие сведения и методы исследования, а в первую очередь сегодняшнее понимание этой области, ее, так сказать, современную идеологию. А она весьма нетривиальна и во многом отлк ется, например, от идеологии химии белка. Как мы дальше увидим, дан<е такое фундаментальное химическое понятие, как понятие об индивидуальном веществе, имеет различный смысл для белков и полисахаридов. Мы попытаемся дать читателю почувствовать современную логику мышления исследователей в этой очень своеобразной и увлекательной области биоорга ической химии. [c.3]

    На основании количественного исследования процесса активации адсорбированной молекулы показано [21], что значение AF°b должно быть тем больше, чем сильнее взаимодействие адсорбент — адсорбат, и уменьшаться с увеличением растворимости органического соединения. Анализ данных [35, 36] показывает, что энергетические характеристики адсорбции органических соединений на углеродных адсорбентах изменяются пропорционально молекулярной рефракции адсорбата, а энтропия адсорбции слабо зависит от структуры органического вещества. Поэтому изменение энтропии при переходе адсорбированной органической молекулы в активированное состояние можно принять постоянным в случае диффузии ряда веществ, а изменение энтальпии при переходе адсорбированной молекулы в активированное состояние АН°ь пропорциональным молекулярной рефракции [/ ] и логарифму растворимости органи- [c.120]

    Таким образом, исследование влияния органических веществ на структурообразование цементных дисперсий [300] в целом подтверждает выдвинутый нами механизм формирования простран- ственных дисперсных структур на ранних стадиях. [c.115]

    Адсорбция органического субстрата также приводит к деформации его молекулы с разрыхлением и разрывом связей и к образованию связей с катализатором. Имеющие место химические взаимодействия сопровождаются выделением большого количества теплоты (например, при адсорбции этилена на никеле - около 250 кДж/моль). Изучение нестойких соединений, образующихся при взаимодействии органических веществ с катализатором на его поверхности и неразрывно связанных с ним, является очень трудной задачей. Тем не менее аналогии между гетерогенными и гомогенными, катализируемыми и некатализируемыми реакциями в сочетании с данными физико-химических исследований позволили представить вероятную структуру поверхностных соединений и, используя эти представления, объяснить важнейшие экспериментально установленные химические особенности процесса гидрирования. [c.26]

    Исследование адсорбции при восстановлении органических веществ. В качестве модели адсорбирующегося органического вещества исследован метиленовый синий. Молекула тетраметилтионинхлорида имеет почти плоскую структуру  [c.102]

    На основании исследований структуры углей, проведенных различными методами, многие авторы пытались выразить свои представления о строении угольного вещества с помощью химических структурных формул. Первая попытка в этом направлении была сделана еще в 1881 г. Муком [10, с. 163], предложившим несколько гипотетических формул строения молекулы каменных углей . Исходя из данных элементного анализа, он вывел эмпирическую формулу С21Н12О (а). Дьюар [11, с. 24] предложил структурную модель, которая с позиции структурной теории не выдерживает критики, но представляет интерес, так как в ней подчеркивается, что органическая масса углей может иметь особую угольную структуру (б)  [c.218]

    Как показали исследования, взрывоопасность аэрозолей, содержащих пыли органических веществ, в структуре которых имеются галоиды, существенно снижается [92]. Так, показатель взрывоопасности салициланилида (размер частиц менее 74 мкм, влажность 0,1%) составил 5,8 (см. табл. 22), а трибромсалициланилида (размер частиц менее 74 мкм, влажность 0,7%) — менее 0,1. Показатель взрывоопасности хлорированных полиэфирных смол составил 0,2. Порошки фторопластов загорались только в приборе — печи (см. примечание к табл. 14). Сополимеры винил- и винил-иденхлоридов были невзрывоопасны. [c.102]

    VI. Установленные в этом исследовании факты лучше объясняются гидролитической теорией Траубе-Ваха, чем дегидрогенизационной теорией Виланда, экспериментальная химическая база которой не является бесспорной. В основе окислительно-восстановительных реакций лежит не активирование водорода с последующим отнятием его, не миграция водорода от одной молекулы к другой или от одной части молекулы к другой, а способность органических веществ определенной структуры окисляться за счет гидроксила воды. Углеводы принадлежат к этой категории органических соединений, и этим обусловливается их значение в жизни клетки. [c.338]

    На основании результатов рентгенографических исследований различных углей Райли сделал вывод, что рассматривать органическое вещество углей как образованное мелкими графитовыми кристаллитами — значит злоупотреблять теорией кристаллиты углей Б значительной мере отличаются от кристаллитов графита. Райли и некоторые другие авторы пришли к мысли, что каменные угли находятся в промежуточном состоянии между аморфным и кристаллическим. Их структура называется мезоморфической, потому что установлена строгая ориентация углеродных атомов только в двух направлениях, а не в трех, как в кристаллическом графите. [c.216]

    В области высоких (от 500°С и выше) температур в массе большинства органических веществ интенсивно формируются графитоподобные структуры (ШС) Г 4 Л. Исследование процессов графитации и карбонизации органических веществ, а тем более природных смесей (углей, тверцых нефтепродуктов) на уровне отдельных микростадий невозможно провести, учитывая полидисперсность кошонентов по массе,составу и структуре. Тем не менее, дифракционные методы дают информа-цшо о среднем изменении структуры на молекулярном уровне во времени в различных условиях температурной обработки, и могут служить надежным инструментом исследования кинетики форищювавия кристаллической структуры I 4 3. Но до настоящего времени не сущестщ-ет эффективного количественного способа исследования кинетики структурирования кристаллитов. В работах Г 5,6 3 по данным рентгеновской дифракции оценивалась константа скорости и энергия активации, карбонизации и графитации 6 J. Степень графитации () описывалась как функция о/002 - межплоскостного расстояния и времени [c.149]

    Исследование св011ств моиомолекулярных слоев (нерастворимых нленок) методами измероиия двухмерного давления, скачка потенциала, вязкости, структурно-механических свойств и т. д. оказалось очень плодотворным и позволило изучить структуру молекул некоторых сложных органических веществ. Наибольшие успехи в этой области были, пожалуй, достигнуты нри исследовании стеринов и гормонов [18, 63]. Появились работы, посвященные изучению мотюмолекулярных слоев 25  [c.387]

    Твердые парафины в нефтях находятся в растворенном или взвешенном кристаллическом состоянии. При перегонке мазута в масляные фракции попадают парафины, имеющие состав i8 —Сз5. В гудронах концентрируются более высокоплавкие углеводороды Сза — Сбз- Количество возможных изомеров для этих углеводородов огромно. Так, уже гексадекан имеет 10 359 изомеров, кипящих в пределах 266—288,5 °С. Но, как показали многочисленные исследования, около половины всех твердых парафинов нефти имеет нормальное строение, а остальные представлены мало-разветвленными структурами с небольшим числом боковых цепей (в основном, метильные и этильные группы). В ряде нефтей обнаружено наличие непрерывного ряда углеводородов, начиная от Сп- Например, в битковской нефти найдены все углеводороды нормального строения от С17 до С42. Вместе с тем сейчас уже не подлежит сомнению, что наряду с углеводородами СпНгп+2 в нефтях имеются твердые, способные к кристаллизации органические вещества с циклической структурой. Однако эти углеводороды главным образом входят в состав не парафинов, а церезинов — смесей более высокомолекулярных и высокоплавких углеводородов, которые выделяются либо из остаточных нефтепродуктов, либо из горючего минерала озокерита. [c.24]

    Развитие современной органической химии немыслимо без использования новейших физических методов, позволяющих исследовать структуру индивидуальных веществ и состав сложных многокомпонентных смесей. Только с помощью этих методов возможно решить одну из основных задач органической химии установить количественную зависимость между структурой вещества и его реакционной способностью, что позволяет не только объяснить, но и предсказывать разнообразные свойства органических веществ. Поэтому, несмотря на сложность, высокую стоимость и все еще недостаточную надежность, физические приборы играют все большую роль в исследованиях химика-органлка и часто только применение их обеспечивает успешное решение поставленной проблемы. [c.3]

    Для более полного истолкования особенностей адсорбции органических веществ в области анодных потенциалов необходимо дальнейшее накопление экспериментального материала с использованием комплекса физико-химических и физических методов. Исследования должны быть направлены на более глубокое выяснение кинетики хемосорбции и электроокнсления хемосорбированных частиц, природы неоднородности поверхности, установление структуры хемосорбционного комплекса и ее зависимости от по-тенциалл и адсорбции атомов и ионов на поверхности. [c.123]

    Изменение электрокаталитических свойств металлов при переходе к их дисперсным формам, очевидно,, определяется суммарным влиянием большого числа факторов преимущественным выходом тех или иных граней, большим числом биографических дефектов кристаллической решетки,, особенностями пористой структуры, адсорбцией микропримесей и т. д. Выявить парциальное действие тех или иных факторов пока не удается. Работ по исследованию влияния дефектов структуры кристаллической решетки на электрокаталитические процессы проводится мало, и выводы этих работ довольно противоречивы. Однако в пределах тех изменений дефектности поверхности гладких электродов, которые вызывают такие операции, как химическое травление, механическое полирование, наклеп, высокотемпературный отжиг и т. п., существенных изменений скоростей электрокаталитических процессов с участием органических веществ на металлах группы платины не установлено. Очевидно, после этих операций с электродом доля дефектных мест остается весьма ма-ло1(, к тому же их влияние в сильной мере снижается за счет г рочыой хемосорбции органических молекул. [c.296]

    Весьма полезными с точки зрения исследований структуры-веществ оказались измерения оптического вращения в зависимости от изменяющейся длины волны плоскополяризованнога света. Из полученных кривых дисперсии оптического вращения в определенных случаях можно делать выводы о конформации и конфигурации исследуемых органических соединений. [c.86]

    Первое публичное выступление А. М. Бутлерова по теоретическим вопросам органической химии относится к концу 50-х годов это доклад его иа заседании Парижского химического общества и его статья Замечания о новой химической теории А. С. Купера (1859 г.). В этой статье А. М. Бутлеров, в частности, писал, что за радикалы следует считать не только органические группы, но и такие группировки, как ОН, NH. , т. е. те характерные для органических веществ сочетания атомов, которые впоследствии получили названия функциональных групп. Здесь он впервые употребил и термин структура , говоря, что к одному типу молекулярной структуры относятся, например, метан, хлористый метил, хлористый метилен, хлороформ, четыреххлористый углерод, метиловый спирт, т. е. соединения с одним углеродным атомом, производные метана. В статье содержались следующие наиболее примечательные мысли <вкснериментальные исследования дадут нам [c.16]

    Исследования X. К. Труу [Л. 7] показали, что органическое вещество прибалтийских сланцев преимущественно раополагается в гнездах (колониях). Разме.ры отдельных гнезд колеблются в весьма широких пределах н могут доходить до 140 мкм. X. К. Труу исследовал также изменения в структуре эстонских сланцев, происходящие при их нагревании. В пробах, нагретых до 200°С, можно под микроскопом наблюдать четкое отделение контуров колоний от неорганического скелета. Начиная с 380—400°С характер распределения органического вещества сильно меняется оставшееся органическое вещество (главным образом углерод) распределяется равномерно по минеральному скелету топлива, а размеры и внешний вид частиц сланца при этом почти не изменяются. [c.20]


Смотреть страницы где упоминается термин Органические вещества, исследование структуры: [c.105]    [c.63]    [c.46]    [c.102]    [c.199]    [c.287]    [c.5]   
Современная аналитическая химия (1977) -- [ c.77 ]




ПОИСК





Смотрите так же термины и статьи:

Органические вещества, исследование



© 2025 chem21.info Реклама на сайте