Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Динамическое нагружение цепи

    Динамическое нагружение цепи [c.143]

    До сих пор в данной работе были приведены результаты исследования квазистатического взаимодействия цепи и окружающей матрицы. Отмечалось, что осевые усилия, которые получаются в таком случае, меньше из-за проскальзывания цепи. При динамическом нагружении эти силы могут быть больше, если становятся эффективными силы трения или инерции. [c.143]


    Совершенно иной механизм нагружения цепи преобладает в процессе пластической деформации полимеров при деформациях от 30 % до нескольких сотен процентов. В данном случае цепь будет рваться под действием сил трения, существуюш,их между цепями самой молекулы или ее цепями и другими морфологическими элементами при их динамическом сдвиге (гл. 5, разд. 5.2.5). Достигаемые напряжения вдоль оси цепи пропорциональны молекулярному или фибриллярному коэффициентам трения и скорости деформации е. Поэтому число критически нагруженных цепей будет отражать сильный рост коэффициента трения в зависимости от понижения температуры. Девис и др. [19] деформировали листы полиэтилена с высокой молекулярной массой на воздухе и регистрировали образование кислотных радикалов. Для истинной деформации 1п(///о), равной, например 1,1, что соответствует условной деформации 200 %, концентрация кислотных радикалов возрастает от 5-10 см при 294 К до 10 СМ при 160 К. Скорость накопления радикалов [Н]/й 1п(///о) имеет две области переходов одну при температурах 180—200 К и другую — начиная с 250 К и выше. [c.204]

    Динамическое действие удара в области дефекта образца проявляется, во-первых, в повышении местного уровня напряжения в соответствии с зависимостью сг ах = [где х = /( ) представляет собой коэффициент динамического повышения напряжения], во-вторых, в изменении значения местной удельной энергии К. У хрупких материалов типа акрилона величина К уменьшается при повышении скорости нагружения. У некоторых материалов, имеющих и в стеклообразном состоянии отчетливо выраженную область пластических деформаций, высокая скорость нагружения может вызывать местное упрочнение у края трещины благодаря соответствующей ориентировке молекулярных цепей и повышать сопротивление развитию трещины быстрого разрушения. Такие свойства обнаруживает, например, вязкий полистирол. [c.35]

    В противоположность статическим опытам, при динамическом усталостном нагружении ориентация в большей степени происходит в случае жестких молекулярных цепей (таких, как целлюлоза), чем в гибких полимерах. Сравнительные опыты были выполнены с использованием моноволокон вискозы и ПА-6 [1210, 1211]. В последнем случае ориентация возрастает со временем, так как дезориентация не успевает протекать при коротких циклах нагружения. [c.336]

    Не влияя принципиально на характер термической деструкции серных вулканизатов, динамическое нагружение увеличивает скорость протекающих нри этом деструктивных процессов и реакций вторичного сщивания. Константы динамической ползучести (крипа) Ккр в зависимости от структуры вулканизационной сетки оказались в 1,5—3 раза выще соответствующих констант химической релаксации напряжения Кр. Степень механической активации термического распада поперечных связей определяется структурой. вулканизационной сетки. В вулканизатах с С—С связями коэффициент активации Кя — отнощение Ккр1Кр — равен 1, а в вулканизатах с полисульфидными связями Кз колеблется от 1,5 до 3, увеличиваясь с ростом числа атомов серы в связях. Воздействие динамического фактора не связано непосредственно с реакциями окисления, а проявляется в механической активации термического распада поперечных связей вулканизационной сетки, далее вызывающего развитие окислительных цепей. [c.358]


    Рассмотренные положения об активации реакций присоединения киспорода без разрыва напряженной связи С-С, но с разрывом ненапряженной связи С-Н подчеркивают правильность ранее сделанных выводов Q77, 78] о недеструктивной природе ускорения окислительных процессов механическими напряжениями. Явление механической активации окисления эпастомеров при динамическом нагружении в 50-е годы было объяснено тем, что наиболее реакционноспособные участки молекулярной цепи - двойные связи - активируются при приложении механических нагрузок, при этом увеличивается скорость присоединения кислорода к активированной двойной связи без изменения молекулярной массы полиме жой мопш улы  [c.89]

    При ударном нагружении ПП (например, до деформации последнего 10,5 % менее чем за 0,1 с) наибольшее поглощение полосы 955 см обнаруживается через = 69 с, когда реализуется значительная часть релаксации напряжения, в то время как при постепенном нагружении со скоростью деформации 10 %/мин наибольшее поглощение соответствует максимуму напряжения при деформации 10,5%. Наибольшее увеличение интенсивности полосы 955 см- (в 3,2 раза) больше при ударном нагружении по сравнению с постепенным нагружением [38]. Поэтому передача молекулярного напряжения в высокоориен-тироваиный ПП представляет собой вязкоупругий процесс, включающий деформирование аморфных областей и противодействие раскручиванию геликоидального упорядочения. Вул [39] провел детальный экспериментальный и расчетный анализ релаксации напряжения, динамического поведения ИК-спектров и разрыва связей. Он пришел к выводу о необходимости учитывать различные степени чувствительности к напряжению кристаллических областей (2,1 см- на 1 ГПа) и отдельных цепей (8 см- на 1 ГПа). Вул показал, что в первую очередь релаксируют наиболее высоконапряженные цепи (952 см- ), внося таким образом вклад в увеличение интенсивности спектров высоких частотах (например, 955 и 960 см- ), а также что разрыва связи не произойдет, если энергия ее активации Но равна или больше 121 кДж/моль. Если Уд =105 кДж/моль, то происходит разрыв очень небольшого числа цепей (вызывая [c.237]

    В начале опытов нагруженная плита покоилась на фундаментной плите (основании). После включения вибратора и достаточного возрастания вибрационной нагрузки плита периодически, синхронно с действием вибратора, отрывалась от основания, приподнималась над ним, затем опускалась на него и неподвижно лежала на нем в течение некоторой части периода (рис. 40). Электрическое сопротивление токопроводящей жидкости (водопроводной воды) при подъеме плиты плавно возрастало, а при ее спуске уменьшалось скачком, свидетельствовавшим о захлопывании кавитационных каверн. В случае нетокопроводящей жидкости (масло, керосин) разрыв электрической цепи и ее восстановление происходили одинаковым образом, сопровождаясь кратковременными изменениями тока при слабом касании плиты и основания. При достаточно большой динамической нагрузке Р > 0,3 плита полностью отрывалась от основания и постоянно устойчиво поддерживалась над ним как бы во взвешенном состоянии, без прямого контакта. При этом под гармоническим воздействием вибратора плита колебалась также почти гармонически. В таком состоянии электрическое сопротивление оставалось почти постоянным. Плита могла легко скользить по основанию, так как вязкое сопротивление кавитирующей жидкости весьма невелико. Кавитацию можно было наблюдать в опытах с прозрачной плитой. Оказалось, что кавитация имела обычные 184 [c.184]

    Представленные на рис. IV.4 и IV.5 экспериментальные данные позволяют также в качественной форме указать, каков характер влияния молекулярного веса полистирола на положение границ релаксационных областей. Видно, что длина цепи никак не влияет на свойства стеклообразного, кожеподобного и каучукоподобного материалов. Это связано с тем, что вязкоупругие свойства полимера в этих областях обусловлены релаксационными процессами, происходящими в пределах кинетического (или динамического) сегмента, величина которого не зависит от длины цепи в целом. Положение радикально изменяется при переходе к области эластовязкого и вязкотекучего состояний, в которых поведение полимера определяется релаксационными процессами, захватывающими несколько сегментов и макромолекулярную цепь в целом. Здесь с повышением молекулярного веса переход к области вязкого течения, требующий вовлечения в релаксационный процесс всей полимерной цепи, смещается в изотермических условиях в сторону большей длительности нагружения (или, что то же самое, меньших частот деформирования). Это означает, что для того чтобы с повышением молекулярного веса при одной и той же нагрузке обнаружить вязкое течение образца (например, если для этого требуется достижение определенной величины необратимой деформации), необходимо резко увеличить продолжительность наблюдения за развитием деформации полимера.  [c.152]


Смотреть страницы где упоминается термин Динамическое нагружение цепи: [c.44]    [c.132]    [c.132]    [c.279]    [c.129]    [c.310]    [c.275]   
Смотреть главы в:

Разрушение полимеров -> Динамическое нагружение цепи




ПОИСК







© 2024 chem21.info Реклама на сайте