Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакционная способность и энергетические профили

    Выход и состав конечной КМ зависит от природы нефтяного сырья, условий, технологии и аппаратурного оформления процесса карбонизации. Наиболее важными показателями качества сырья,с этой точки зрения, являются элементный, фракционный и групповой составы, характеризующие его молекулярную структуру, ММР, функциональность и реакционную способность, а также интенсивность ММВ в нём. Температура, давление, механическое перемешивание КМ, волновые воздействия на неё, продувка инертного газа или газа-реагента через её слой позволяют в довольно широких пределах изменять выход, состав, структуру и свойства конечной КМ, Важное значение имеет динамика (профиль) изменения температуры, давления и интенсивности и других энергетических воздействий на КМ во времени. Существенна роль поверхности стенок реакционной аппаратуры, причём настолько, что её необходимо учитывать как один из [c.128]


    Реакционная способность соединения измеряется энергией активации, необходимой для образования данного активированного комплекса. Поэтому, обсуждая реакционную способность соединения, необходимо иметь в виду конкретную реакцию. На рис. 5-6 показаны два энергетических профиля, иллюстрирующие, как одно соединение может быть одновременно и более реакционноспособным и более стабильным, чем другое. [c.192]

    Изложенные результаты демонстрируют новые возможности. Связанные с использованием спектроскопических данных для изучения энергетического профиля отдельных элементарных стадий каталитических реакций и расчета их энергий активации. Углубленные спектральные исследования кривых потенциальной энергии адсорбированных молекул и каталитических комплексов, несомненно, открывают новые возможности для создания современной теории реакционной способности и понимания природы и специфики каталитического действия на атомно-молекулярном уровне. Хотя рассмотренные выше примеры охватывают пока только отдельные классы реакций, они существенно уточняют, казалось бы, незыблемые представления об их механизме. Это, в первую очередь, относится к кислотному катализу с участием бренстедовских центров, где в силу высокой характеристичности колебаний ОН-связи трактовка результатов является наиболее наглядной. [c.34]

    Использование индексов реакционной способности на основе соотношений ЛСЭ типа (2.27) предполагает соблюдение правила непересечения энергетических профилей подобных реакций (рис. 2.2а), согласно которому энергия, необходимая для достижения любой точки на координате реакций, пропорциональна отношению их энергий активации  [c.129]

    Причина возможного пересечения энергетических профилей заключается в различном влиянии на разных участках пути реакции не только структурных факторов, но и сольватационных эффектов. Квантово-химические расчеты индексов реакционной способности относятся, по существу, к газовой фазе и переносятся на реакции в растворах в допущении, что изменения энергий сольватации сравниваемых систем одинаковы на всем реакционном пути. Сложность и многообразие сольватационных взаимодействий (см. разд. 2.5) заставляет думать, что и это правило часто не соблюдается.,  [c.129]

    Различные индексы реакционной способности соответствуют различным моделям переходных состояний и движущих сил реакции. Индексы первой группы исходят из предположения о раннем переходном состоянии, близком по структуре и положению на энергетическом профиле реакции к исходной молекуле. Индекс свободной валентности Ег является современным видоизменением представлений Тиле об остаточном сродстве (см. 1.2.1). Чем больше степень участия атома г в образовании л-связей с соседними атомами ароматической системы, тем меньше его индекс свободной валентности и его способность связываться с атакующим реагентом. Использование л-электронной плотности дг, рассчитываемой суммированием вкладов всех заполненных МО, адекватно представлению об определяющем значении электростатического взаимодействия между субстратом и реагентом, благодаря которому электрофильная атака легче направляется на атомы с наибольшей, а нуклеофильная — с наименьшей электронной плотностью. Индекс собственной поляризуемости Пгг отражает легкость изменения суммарной л-электронной плотности на атакуемом атоме под влиянием реагента. Чем больше индекс Пгг атома г, тем легче в это положение должны идти реакции как электрофильного, так и нуклеофильного замещения. [c.93]


    Различные индексы реакционной способности соответствуют различным моделям переходных состояний и движущих сил реакции, При использовании индексов первой группы исходят иэ предположения о раннем переходном состоянии близком по структуре и положению на энергетическом профиле реакции к исходной молекуле. Индекс свободной валентности ( Рл) является современным видоизменением представлений Тиле об остаточном сродстве (см, разд. 1.1.1). Чем больще степень участия атома в положении г в образовании л-связей с соседними атомами ароматической системы, тем меньше его индекс свободной валентности и способность связываться с атакующим реагентом. Использование я-электронной плотности [дг), рассчитываемой суммированием вкладов всех заполненных МО, адетсватно представлению Об определяющем значении электростатического взаимодействия между субстратом и реагентом, благодаря которому электрофильная атака легче направляется на атомы с наибольшей, а нуклеофильная — с наименьшей электронной плотностью. Индекс собственной поляризуемости Птг отражает легкость изменения суммарной л-электронной плотности на атакуемом атоме под влиянием реагента. Чем больше индекс Ягг атома, тем легче в это положение должны идти реакциь как электрофильного, так и Нуклеофильного замещения. Граничная электронная плотность учитывает распределение электронной плотности только на граничных орбиталях на высшей занятой молекулярной орбитали (ВЗМО) при электрофильном замещении и на низшей свободной молекулярной орбитали (НСМО) после переноса на нее двух электронов при нуклеофильном замещении. Мерой граничной электронной плотности положения является коэффициент Сг , отражающий вклад атомной орбитали атома в положении г в граничную молекулярную орбиталь т. Считают, что электрофильное и нуклеофильное замещения протекают пр месту с наибольшим значением коэффициента Сг на соответствующей граничной орбитали. При свободнорадикальном замещении и ВЗМО, и НСМО рассматриваются как граничные орбитали [366]. Поскольку граничная электронная плотность пригодна только для рассмотрения ориентации в данной молекуле, для выявления относительной реакционной способности различных систем введен индекс, на-,званный срерхделокализуемостью (5г). При формулировке этого-индекса использована теория возмущений [361 ] в применении к модели, в которой вступающая группа образует слабую п связь с атомом в положении г, а я-система в целом не изменяется. К индексам теории граничных орбиталей [366] близки другие индексы, основанные,на представлении о переходном состоянии как комплексе с переносом заряда, например 7-фактор 43]. Обсуждавшиеся в. связи с концепцией одноэлектронного переноса корреляции между относительной реакционной способ- [c.127]

    Важно знать как можно больше о природе переходного состояния в реакциях ароматического замещения, а изотопный эффект дает информацию о том, в какой момент происходит разрыв С — Н-связи. Можно предположить, что общий профиль энергии будет в широком интервале одинаковым для всех реакций электрофильного замещения, т. е. что промежуточное соединение будет ограничено с обеих сторон двумя энергетическими максимумами, но детали, в частности относительные высоты максимумов, будут различаться в зависимости от природы электрофильного агента и ароматического субстрата. Наличие промежуточного соединения еще не означает, что переходное состояние будет всегда сходно с ним, и можно предположить, что различные реакции замещения будут отличаться рядом деталей. Эти различия не всегда можно предвидеть так, в недавних качественных электронных теориях большое внимание обращалось на влияние заместителей в ароматическом субстрате, а не на замечающий агент. Большинство правил ориентации, включая и те, которые были установлены до принятия электронной теории, было преимущественно получено из данных по реакции нитрования без учета отличий замещающих агентов и относительных скоростей различных реакций. Наблюдаемые в различных реакциях особенности часто приписывали стерическим эффектам электрофильного агента или субстрата. В 50-х годах начали признавать, что замещающий агент должен оказывать значительное влияние на относительные скорости реакций и начальную ориентацию [159—161]. Для некоторых реакций были получены качественные результаты, указывающие на такое влияние так, соотношение общих реакционных способностей толуола и бензола равно примерно 25 при нитровании, около 600 при бромировании и менее 5 при алкилировании. Далее, нитрование приводит к большим количествам лге/па-замеЕценных, чем бромирование, а при алкилировании лге/па-замещенные почти не образуются. Было предположено, что ион нитрония представляет собой очень сильный нитрующий агент, для которого, в частности, не требуется наличия активированных положений в ароматическом кольце. При бромировании мы имеем дело с менее сильным электрофильным агентом. Кроме того, связь Вг — Вг в отличие от иона нитрония расщепляется в переходном состоянии, поэтому процесс замещения при бромировании затруднен. Процесс бромирования требует максимальной подачи электронов заместителем, поэтому он избирателен по отношению к различным субстратам и различным положениям. [c.477]



Смотреть главы в:

Методы получения и некоторые простые реакции присоединения альдегидов и кетонов Ч.1 -> Реакционная способность и энергетические профили




ПОИСК





Смотрите так же термины и статьи:

Профили шин



© 2025 chem21.info Реклама на сайте