Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Соединения четырехвалентного осмия

    Соединения четырехвалентного осмия [c.633]

    Основные научные работы посвящены химии комплексных соединений платиновых металлов, разработке методов их анализа и аффинажа. Выполнил (1915) исследование гидроксиламиновых соединений двухвалентной платины. Изучал комплексные нитросоединения двухвалентной платины, на примере которых открыл ( 926) закономерность транс-влияния, носящую его имя. Суть ее заключается в том, что реакционная способность заместителя во внутренней сфере комплексного соединения зависит от природы заместителя, находящегося по отношению к первому заместителю в граяс-положе-НИИ. В дальнейшем эта закономерность оказалась приложимой к ряду соединений четырехвалентной платины, палладия, радия, иридия и кобальта. Открыл явление перемены знака вращения плоскости поляризации оптически активными аминосоединениями платины (IV) при превращении их в амидо(ими-до) производные. Предложил промышленные методы получения платины, осмия и рутения. [c.557]


    Определению мешают вещества, обладающие таким же каталитическим действием, как и йодиды. К ним относятся соли осмия и рения, частично бромиды и хлориды. Определению мешают также ионы, образующие с йодид-ионами нерастворимые соединения (ионы ртути, серебра, свинца). Мешают также цианиды, роданиды и все другие соединения, восстанавливающие четырехвалентный церий. [c.168]

    Задача I. Написать формулы соединений с кислородом следующих элементов одновалентных калия К и серебра Ag, двухвалентных меди Си и никеля N1, трехвалентного железа Ре, четырехвалентных олова 8п и кремния 81, пятивалентных фосфора Р и азота N. шестивалентного вольфрама семивалентного марганца Мп и восьмивалентного осмия Оз. [c.93]

    В своих соединениях платиновые металлы встречаются в различных состояниях окисления. Это особо резко выражено для двух аналогов железа — рутения и осмия, у которых валентность достигает максимального значения (Vni) (стр. 631). Платина и иридий могут быть шестивалентными родий и палладий максимально четырехвалентны. Все элементы этой группы дают прочные комплексные соединения. [c.674]

    А. Соединения четырехвалентного осмия Реакциа мокрым путем [c.574]

    Комплексные фториды осмия очень напоминают аналогич ные соединения рутения обработка смеси четырехбромистого осмия и бромистого калия (в соотношении 1 1) трехфтористым бромом приводит к KOsFe — твердому белому веществу с ма гнитным моментом, равным 3,2 магнетона Бора. Оно разлагается при нагревании в водном растворе щелочи с выделением кис лорода, при охлаждении смеси выделяется бледно-желтый комплекс четырехвалентного осмия КгОзРе ( л=1,35 магнетона Бора). При помощи ионообменников можно приготовить рас твор кислоты НгОзРб, а из последнего были получены другие соли з, [c.114]

    Единственным действительно важным соединением четырехвалентного марганца является МпОг — твердое вещество, имеющее окраску от серой до черной и встречающееся в природе в виде минерала пиролюзита. Марганец соединяется с кислородом при высокой температуре, образуя диоксид со структурой рутила, характерной и для многих других оксидов общей формулы М Оз, в частности для оксидов рутения, молибдена, вольфрама, рения, осмия, иридия и родия. Но при получении обычным методом, например прокаливанием Мп(Ы0з)2-6Н20 на воздухе, образуется несте-хиометрический оксид. Гидратированную форму получают при восстановлении КМПО4 в щелочном растворе. [c.466]


    Двуокись осмия ОвОд образуется в виде синевато-черного порошка при нагревании солей четырехвалентного осмия вместе с содой в струе углекислоты или при нагревании тонко измельченного осмия в парах четырехокиси осмия. Плотность соединения ОзОг равна 7,91 г/см . При нагревании выше 400° цвет этого окисла становится синим, а выше 460° он заметно разлагается по реакции 2050г = Оз + 0б04. [c.677]

    Б этой таблице имеется 8 вертикальных столбцов, которые содержат 8 групп элементов валентность их по кислороду изменяется от 1 до 8 при переходе от группы I к группе VIII элементы групп I, II, III и VIII х>бычных соединений с водородом не образуют, но элементы групп IV, V, VI и VII с ним соединяются, причем валентность по водороду уменьшается от группы IV к группе VII. Группа VIH содержит элементы различной валентности, которая варьируется от одновалентности (как у никеля) до восьмивалентносги (как у осмия). Элементы этой группы проявляют обыкновенно промежуточные степени валентности так, железо, кобальт и никель, как правило, бывают двух- и трехвалентны, платина и ее аналоги — двух- и четырехвалентны и т. д. [c.272]

    Стереохимия. Координационные числа больше 6 встречаются лишь в нескольких соединениях, например в 08Н4(РКз)з и 1гН5(РКз)2. Большинство комплексов для трех- и четырехвалентных металлов имеет октаэдрическую структуру. Соединения с металлами в -конфигурации [К11(1), 1г(1), Рс1(П) и Р1(П)] обычно представляют собой квадратные комплексы или структуры с координационным числом 5. Двухвалентные рутений и осмий образуют соединения с координационными числами 5 или 6. [c.507]

    Катализаторами при титровании соединений трехвалентного мышьяка самыми разнообразньши окислителями — перманганатом, хлоратом, броматом, иодатом, перйодатом, четырехвалентным церием, хлорамином Т и др. — служат соединения осмия или хлористый иод. Первые, пожалуй, наиболее часто употребляются как катализаторы окислительно-восстановительных реакций. Это обусловлено тем, что осмий дает соединения с переменной валентностью и имеет наибольший набор числа валентностей (от 8 до 2 и, может быть, даже 1). Соревноваться с ним могут, по-видимому, только соединения рутения — элемента, для которого также характерно обилие различных степеней окисления. [c.91]

    Тяжелые аналоги железа — рутений и осмий — имеют электронные конфигурации и . Они проявляют валентности от 2-Ь до 8+, однако наиболее прочны соединения, где они четырехвалентны. Если в металлическом состоянии свободными становятся 4 -электрона, то их ионы могут иметь оболочки , V или . Сферическая симметрия -оболочек или псевдосфероидальпая симметрия оболочек обусловливает плотную гексагональную структуру этих металлов, сохраняющуюся до температуры плавления. Аналоги кобальта — родий и иридий —имеют конфигурации V и соответственно. Эти поливалентные металлы образуют наиболее устойчивые соединения в трехвалентном состоянии. Ионы КЬ и 1г с шестью электронами, занимающими - и -уровни (конфигурации , ), имеют сферическую симметрию. Это может быть причиной существования плотных кубических упаковок ионов этих металлов. Аналоги никеля — палладий и платина — в свободном состоянии имеют конфигурации и . В соединениях они проявляют валентности 2+, 3+ и 4+, причем ионы Ме отвечают весьма стабильным соединениям. Можно полагать, что в металлическом состоянии от их атомов отщепляется по два электрона и образуются ионы и с конфигурациями или , [c.227]

    На рис. 99 представлено изменение валентных состояний металлов больших периодов в зависимости от их атомного номера. Указаны валентности каждого металла в различных химических соединениях, причем валентности, соответствующие наиболее прочным соединениям, даны зачерненными значками. От I до VI групп высшей валентностью, отвечающей наиболее прочной химической связи, оказывается валентность, соответствующая номеру группы. Только у хрома наряду с шестивалентными соединениями сравнительно прочными оказываются и трехвалентные. В VII группе наибольшая прочность соединений соответствует двухвалентному марганцу, который бывает и одновалентным, однако технеций и рений дают более стабильные четырех-, шести- и семивалентные соединения. В VIII группе у железа, кобальта и никеля наибольшая прочность связи соответствует двух- и трехвалептным соединениям, а у рутения и осмия — четырехвалентным. У родия и иридия наиболее прочны трехвалентные соединения, у никеля, палладия и платины — двухвалентные, а у металлов I группы — меди, серебра и золота — устойчивы одновалентные соединения. Итак, обычные химические валентности у элементов 4-го, 5-го и б-го периодов нарастают от 1+ для калия, рубидия и цезия до 6-(-для хрома, молибдена и вольфрама, а затем падают до 1+ У меди, серебра и золота. Принимая, что эти валентности определяют число электронов, отделяющихся от атомов соответствующих элементов при образовании [c.229]


Смотреть страницы где упоминается термин Соединения четырехвалентного осмия: [c.464]    [c.633]    [c.29]    [c.28]    [c.416]    [c.380]   
Смотреть главы в:

Курс аналитической химии Том 1 Качественный анализ -> Соединения четырехвалентного осмия




ПОИСК





Смотрите так же термины и статьи:

Осмий

Осмий осмий



© 2025 chem21.info Реклама на сайте