Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Строение биологических мембран

    В последние годы появилось много сведений о строении биологических мембран. Важные данные были получены отчасти благодаря биохимическим методам (выделение различных химических соединений из клеточных мембран), рентгеноструктурному анализу, электронному и ядерному магнитному резонансу, спектроскопии, но в основном благодаря применению электронного микроскопа. Клеточные мембраны, такие, как мембрана эритроцита, состоят из примерно равных коли честв липидов и белков. В них присутствует также небольшое количество (несколько процентов) полисахаридов, которые соединяются с полипептидными цепями с образованием гликопротеидов. [c.465]


    Опишите строение биологических мембран и специфические функции липид-, белок- и углевод-содержащих компонентов. В чем состоят различия между внутренней и наружной поверхностями мембраны  [c.398]

    Образование комплексов фермент—субстрат и гормон—рецептор предполагает узнавание молекулами друг друга. На более высоком уровне организации такой способностью обладают клетки. Так, лейкоциты в токе крови узнают и разрушают чужеродные клетки, например бактериальные, но не нападают на собственные клетки крови. Узнавание проявляется и в контактном ингибировании некоторые клетки высших организмов (например, клетки мышечной ткани) в питательной среде продолжают делиться до тех пор, пока не придут в контакт с другими клетками, после чего их рост прекращается. Раковые клетки в тех же условиях продолжают делиться. В этих двух примерах клеточного узнавания, имею- щего важное значение в медицине, участвуют поверхностные антигены. Уникальность специфических типов клеток указывает на большое разнообразие их поверхностных антигенов, что дополнительно усложняет строение биологических мембран. Процессы клеточного узнавания зависят от подвижности компонентов мембраны, которая, по-видимому, регулируется с помощью микротрубочек, имеющихся в цитоплазме [4]. [c.108]

    Как отмечалось ранее, на основании данных рентгеноскопии, электронной микроскопии и спектроскопических методов видно, что структуры в биологических мембранах аналогичны структурам дисперсий фосфолипидов ( модельных мембран ). Из табл. 25..3.4 следует, что зтк аналогии распространяются и на другие физические свойства этих двух систем и оправдывают изучение модельных мембран для понимания строения биологических мембран. Основное различие между модельными и биологическими мембранами заключается в их проницаемости (см. табл. 25.3.4). Множество [c.114]

    Состав и строение биологических мембран. Биологические мембраны состоят из белков и липидов. Углеводы присутствуют лишь в качестве составных частей сложных белков (гликопротеинов) и сложных липидов (гликолипидов). Нуклеиновые кислоты в небольшом количестве бывают ассоциированы с мембранами, но в состав мембранных структур не включаются. Вода составляет 20% от мембранного материала, а отношение белок/липид в зависимости от вида мембран колеблется от 0,25 (клетки миелиновой оболочки) до 3,0 (митохондриальные мембраны). [c.298]


    Строение биологических мембран [c.302]

    Повышенный интерес к этим соединениям в последние годы обусловлен тем, что они нашли широкое применение в качестве сцинтилляционных активаторов [19], эффективных активных сред жидкостных лазеров [20], флуоресцентных зондов для исследования строения биологических мембран и липопротеинов [21]. [c.47]

    Липиды и строение биологических мембран [c.407]

    Из рентгеноструктурных данных и исследований в поляризационном и электронном микроскопе можно было сделать вывод о детальном строении биологических мембран. Они состоят из двух [c.189]

    Таким образом, интересный и важный вопрос о строении биологических мембран — одного из главных элементов живой клетки — до сих пор окончательно не решен, хотя, по-видимому, не вызывает сомнения тот факт, что все мембраны имеют один и тот же основной принцип организации. [c.379]

    Приведем несколько примеров. Доказано, что у всех населяющих Землю форм живых существ в создании белковой молекулы участвуют 20 аминокислот. Свойственная же отдельным органическим формам белковая специфичность определяется количественным отношением входящих в их состав аминокислот, а также порядком расположения последних в белковой молекуле. Те же закономерности установлены и в отношении нуклеиновых кислот, разнообразие и специфика которых также обусловлены в основном характером чередования нуклеотидов, причем число последних в 5 раз меньше, чем число протеиногенных аминокислот. Установлено, что организмы, принадлежащие к различным семействам, родам и видам животных, растений и микробов, используют в процессе жизнедеятельности один и тот же вид энергии — свободную, или химическую, энергию. Энергию эту они получают от общего для всех живых существ биологического горючего , роль которого выполняют особые соединения, содержащие богатые энергией фосфатные или тиоловые связи (подробнее этот вопрос освещен в главе Дыхание ). Лишь зеленые растения и небольшая группа бактерий способны наряду с этим использовать энергию кванта света, которую они запасают в форме тех же специфических макроэргических соединений. Выявлена близость, но не идентичность строения биологических мембран, ограничивающих поверхность протоплазмы и каждого из содержащихся в ней органоидов у всех представителей живого мира. Доказано, что многие органеллы протоплазмы имеют строго упорядоченную, ламеллярную (пластинчатую) структуру. [c.12]

    В следующей главе мы подробнее рассмотрим строение биологических мембран. Их структурные особенности обеспечивают не только участие мембран и их рецепторов в межмолекулярных взаимодействиях с пептидами, но и функцию упорядоченной диэлектрической среды, специально предназначенной для распространения и усиления электромагнитных колебаний определенной частоты. [c.104]

    В некоторых мембранах, в частности, митохондрий, эндо-плазматического ретикулума, рядом авторов были обнаружены глобулярные частицы [18, 49]. По размеру они были порядка 5—10 нм и часто имели гексагональную упаковку. В результате была сформулирована концепция о субъединичном строении биологических мембран, что нашло отражение в ряде моделей [29, 41]. [c.147]

    Первая модель строения биологических мембран была предложена в 1902 г. Было замечено, что через мембраны лучше всего проникают вещества, хорошо растворимые в липидах, и на основании этого было сделано предположение, что биологические мембраны состоят из тонкого слоя фосфолипидов. На самом деле, на поверхности раздела полярной и неполярной среды (например, воды и воздуха) молекулы фосфолипидов образуют мономолекулярный (одномолекулярный) слой. Их полярные " головы погружены в полярную среду, а неполярные хвосты ориентированы в сторону неполярной среды. Поэтому и можно было предположить, что биологические мембраны построены из монослоя липидов. [c.9]

    Однако по мере накопления экспериментальных данных пришлось в конце концов отказаться и от бутербродной модели строения биологических мембран. [c.11]

    Огромную роль в развитии представлений о строении биологических мембран сыграло все большее проникновение в биологию физических методов исследования. [c.11]

    Известно, что электронам с высокими скоростями тоже присущи волновые свойства, в том числе явление дифракции. Однако при достаточно больших скоростях, согласно формуле де Бройля, длина волны мала и соответственно мал предел разрешения. Так, если электроны ускоряются электрическим полем с напряжением 10 В, их скорость достигает 10 м/с, длина волны уменьшается и предел разрешения составляет порядка 0,1 нм, что позволяет рассмотреть отдельные детали строения биологических мембран. [c.12]

    Современное представление о структуре мембраны. Совокупность результатов, полученных физическими и химическими методами исследования, дала возможность предложить новую жидкостно-мозаичную модель строения биологических мембран (Сингер и Никольсон, 1972 г.). Согласно Сингеру и Николь-сону, структурную основу биологической мембраны образует двойной слой фосфолипидов, инкрустированный белками (рис. [c.13]


Рис. 33. Общая схема строения биологических мембран. Рис. 33. <a href="/info/57985">Общая схема</a> <a href="/info/745731">строения биологических</a> мембран.
    СТРОЕНИЕ БИОЛОГИЧЕСКИХ МЕМБРАН [c.96]

    ОБЩАЯ КАРТИНА СТРОЕНИЯ БИОЛОГИЧЕСКИХ МЕМБРАН [c.228]

    Изучение свойств бислоев служит основой для понимания строения биологических мембран. У биологической мембраны в бислой обычно погружены белковые молекулы. Это могут быть ферменты или рецепторы, специфичные для определенных молекул некоторые из них могут играть роль в активном транспорте или в регуляции проницаемости мембраны для отдельных веществ. Функционирование этих белков зависит от структурных и динамических свойств бислоев, описанных в настоящей главе. Более подробно структура и функции биологических мембран рассмотрены в гл. 4. [c.480]

Рис. 7.9. Строение биологических мембран Рис. 7.9. <a href="/info/745731">Строение биологических</a> мембран
    Изучение строения мембран необходимо для понимания их функционирования. В 1935 г. Ф. Даниэлли и Г. Давсон выдвинули первую гипотезу о строении биологических мембран, согласно которой мембрана состоит из двойного липидного слоя, покрытого с двух сторон слоями глобулярных белков. [c.8]

    Однако мембрана - это не только липидный бислой. Имелись экспериментальные данные, которые свидетельствовали о том, что биологическая мембрана состоит и из белковых молекул. Например, при измерении поверхностного натяжения клеточных мембран было обнаружено, что измеренные значения коэффициента поверхностного натяжения значительно ближе к коэффициенту поверхностного натяжения на границе раздела белок-вода (около 10 Н/м), нежели на границе раздела липид-вода (около 10" Н/м). Эти противоречия экспериментальным результатам были устранены Даниелли и Девсоном, предложившими в 1935 г. так называемую бутербродную модель строения биологических мембран, которая с некоторыми несущественными изменениями продержалась в мембранологии в течение почти 40 лет. Согласно этой модели мембрана - трехслойная. Она образована двумя расположенными по краям слоями белковых молекул с липидным бислоем посередине образуется нечто вроде бутерброда липиды, наподобие масла, между двумя ломтями белка. [c.11]

    Наибольшие успехи в раскрытии особенностей строения биологических мембран были достигнуты в электронно-микроскопических исследованиях. Как известно, световой микроскоп не позволяет рассмот1)еть детали объекта, меньшие примерно половины длины световой волны (около 200 нм). В световом микроскопе можно разглядеть отдельные клетки, однако он совершенно непригоден для изучения биологических мембран, толщина которых в 20 раз меньше предела разрешения светового микроскопа. Разрешающая способность микроскопа ограничена явлением дифракции. Поэтому, чем меньше длина волны по сравнению с деталями исследуемого объекта, тем меньше искажения. Предел разрешения пропорционален длине волны. [c.12]

    Строение биологических мембран. В настоящее врёмя наибольшим признанием пользуется жидкостно-мозаичная гипотеза строения биологических мембран. Согласно этой гипотезе основу мембраны составляет двойной слой фосфолипидов с некоторым количеством других липидов (галактолипидов, стеринов, жирных кислот и др.), причем липиды повернуты друг к другу своими гидрофобными концами. Ненасыщенные жирные кислоты полярных липидов обеспечивают несколько разрыхленное (жидкое) состояние бислоя при физиологических температурах. Этому же способствуют и стерины. Биологические мембраны уже по составу липидов построены асимметрично, так как две их стороны — наружная и внутренняя — обращены в качественно разные гидрофильные среды. В наружном слое плазмалеммы содержится больше стеринов и гликолипидов. [c.13]

    На основании перенесения на структуру мембран данных, полученных при рентгеноструктурном изучении ряда кристаллических белков (миоглобина, лизоцима), Г. Ван-деркой и Д. Грин предложили модель, близкую к жидко-стно-мозаичной. Суть предположения заключается в том, что строение биологических мембран может быть аналогично строению белковых кристаллов с той лишь разницей, что в мембранах роль растворителя играют липиды. Вместе с тем авторы не исключают возможности локализации небольшой части полярных аминокислот и внутри мембран. [c.37]

    В том же году Митчел начинает работать над диссертацией под руководством профессора Д. Даниэлли. Еще в 30-е годы Даниэлли прославился как автор изящной концепции о молекулярном строении биологических мембран. После отъезда Даниэлли из Кембриджа Митчел переходит в группу по изучению фер1 ентов, которую возглавлял известнейший энзимолог М. Диксон (энзимология — наука о ферментах). [c.41]


Смотреть страницы где упоминается термин Строение биологических мембран: [c.423]   
Смотреть главы в:

Биохимия -> Строение биологических мембран

Биофизика -> Строение биологических мембран




ПОИСК





Смотрите так же термины и статьи:

Мембрана биологическая



© 2024 chem21.info Реклама на сайте