Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Измерения объема и давления газа

    Другая идея положена в основу так называемого объемного метода определения изотерм адсорбции. В этом методе адсорбент (обычно в довольно значительных количествах) помещают в сосуд, объём которого хорошо известен. Адсорбент приводится в соприкосновение с порцией газа (или пара), величина которой предварительно тщательно определяется по измерению объёма, давления и температуры этого газа. В результате адсорбции часть газа переходит из объёмной фазы на поверхность адсорбента, и в сосуде устанавливается равновесное давление, измеряемое каким-нибудь манометром. Зная количество впущенного газа, а также объём сосуда, равновесное давление и температуру, нетрудно, конечно, вычислить величину адсорбции. [c.70]


    Характеристики ЛРБ. Особенностью работы рассматриваемой конструкции ЛРБ является то, что облучаемый поглощающий газ находится внутри резонатора лазера. Это приводит к взаимозависимости режимов работы ЛРР и самого СОг-лазера. Так, изменение условий работы ЛРР (давление газа, величина потоков питания и отбора, значение Kq i и т. д.) может существенно повлиять на режим работы СОг-лазера, в частности, меняя энергию импульса и среднюю мощность излучения. В свою очередь, изменения параметров лазерного излучения влияют на работу ЛРР, в частности, — на характеристики стационарного режима. Поэтому нахождение оптимальных условий работы ЛРБ для получения углерода С с требуемым обогащением потребовало проведения значительного объёма экспериментальных измерений. Результаты некоторых из них приводятся ниже. [c.471]

    Первый из этих процессов может играть заметную роль лишь при сравнительно больших давлениях газа. Особенно медленно объёмная рекомбинация происходит в чистых электроположительных газах, не способных образовывать отрицательные ионы. Таковы применяемые в электровакуумных приборах Аг, Ке, Не, Кг, Хе. В электроотрицательных газах, в которых образование нейтральных частиц происходит путём рекомбинации между собой положительных и отрицательных ионов, объёмная рекомбинация происходит быстрее на несколько порядков величины. Поэтому прибавление электроотрицательных примесей к чистым электроположительным газам значительно ускоряет деионизацию плазмы путём рекомбинации в объёме. При малых давлениях газа основную роль для деионизации плазмы играет рекомбинация заряженных частиц на поверхности твёрдых тел при двуполярной диффузии к ним электронов и ионов. На этом основаны применение специальных сеток и металлических цилиндров около анодов в ртутных выпрямителях и другие приёмы изменения конфигурации разрядного промежутка. Малое расстояние между электродами также благоприятно для ускорения деионизации. Большое значение, как это показал В. Л. Грановский, имеют электрические поля, налагаемые на плазму извне, которые изменяют скорость передвижения ионов и электронов к электродам. В выпрямителях такие поля всегда имеются во время полупериода переменного напряжения, соответствующего обратному току, и должны учитываться при теоретической оценке времени деионизации. Экспериментальным методом определения хода изменения концентрации заряженных частиц при деионизации плазмы может служить осциллографирование проводимости плазмы после прохождения через плазму прямоугольного импульса тока. Поле, приложенное между двумя вспомогательными электродами, введёнными в плазму для измерения её электропроводности, должно [c.305]


    Измерения давления при помощи манометра сжатия производят обычно так, что ртуть в открытом капилляре устанавливают на одной высоте с концом закрытого капилляра (рис. 21). Если обозначим через 5 поперечное сечение этого капилляра в мм , а через /г разницу уровней ртути, то объём сжатого газа У] будет равен зН мм , давление его р1 будет равно к мм Н . Вставляя эти значения в равенство (6), находим  [c.49]

    Упомянем ещё об одном методе определения изотерм адсорбции, а именно о так называемом методе независимого взвешивания [50]. Этот метод является своеобразным дополнением к предыдущим методам, так как он применим наилучшим образом именно в тех условиях, в которых трудно применим объёмный метод, а именно при изучении изотерм адсорбции паров с низким значением упругости насыщенного пара. По существу метод независимого взвешивания отличается от объёмного метода способом измерения количества заготавливаемого ( дозируемого ) вещества. Если в объёмном методе для этой цели определяются объём, давление и температура порции газа, то в методе независимого взвешивания определяется масса этой порции газа. Для этого установка снабжается адсорбционными весами с небольшой навеской вспомогательного весьма активного адсорбента (активного угля или силикагеля). Путём соответствующего понижения температуры вспомогательного адсорбента заставляют всю заготовленную порцию газа адсорбироваться на этом адсорбенте и таким способом определяют массу газа. Затем, повышая температуру вспомогательного адсорбента, десорбируют этот газ и переводят его в сосуд с исследуемым адсорбентом [c.71]

    Эксперименты проводились при следующих условиях разрядный ток I = = 50 1000 А, индукция магнитного поля = О 0,15 Т, давление в разрядной камере Р = 0,2 10 Тор. В качестве рабочих газов использовались инертные газы и пары лития. В процессе экспериментов проводились исследования вольтамперных характеристик разряда, зондовая и оптическая диагностика в среднем сечении разрядной камеры, определялось давление в различных точках внутри и на поверхности разрядной камеры. По излучению боковой поверхности оценивались температура и качественный характер тепловыделения в разряде. При помощи трубок Пито, выполненных из вольфрамовых трубок малого диаметра, удалось провести основные измерения гидродинамических характеристик вращающегося плазменного объёма. Были определены аксиальные изменения статического давления и гидродинамического напора для ксенона при различных давлениях в смеси Не-Хе. Соотношения этих величин хорошо согласуются с измерениями изотопических эффектов в ксеноне и доказывают их центробежную природу. [c.333]

    Специальные измерения осевой составляющей скорости плазмы с помощью трубки Пито в случае гелиевого разряда показали существование вторичных циркуляционных потоков. К сожалению линейное рассмотрение гидродинамических явлений в плазменной центрифуге не учитывает процессов, связанных с возбуждением в объёме разрядной камеры вторичных циркуляционных потоков. Они могут являться следствием тормозящего действия торцов разрядной камеры, осевого градиента температуры, а также неоднородности осевой электромагнитной силы, связанной с током в подводящих шинах [25. Как показано, например, в [26, 27] на основе нелинейного магнитогидродинамического приближения, уменьшение окружной скорости газа вблизи торца камеры должно приводить к разбалансу центробежной силы и градиента давления, что вызывает развитые на весь объём камеры вторичные циркуляционные течения. При этом вблизи торца возникает интенсивный поток, направленный к центру, а в основном объёме — в противоположном направлении. Вторичные течения приводят к снижению скорости вращения газа, однако с ними связан и положительный момент. [c.333]

    Измерения показали, что зависимость г от п рь/ро) близка к линейной (рис. 7.4.5). Коэффициент пропорциональности к в зависимости S = к п рь/ро) при низких начальных давлениях (Кг и Хе, р = (1-3) 10 Тор) примерно равен /Jl (зависимость 2, рис. 7.4.5). Однако в основном к > /Jl. С увеличением начального давления р до 1 Тор, величина 1п(рь/ро) в криптоне и ксеноне уменьшается в 10-20 раз, величина же — всего в 2-3 раза. На рис. 7.4.6 представлена зависимость коэффициента обогащения в криптоне от начального давления р. Следует учитывать, что из-за наличия балластных объёмов средняя плотность частиц в разряде всегда ниже той, которая соответствует начальному давлению р (вследствие нагрева газа в разряде и влияния электронного давления). Так при р = 1 Тор (рис. 7.4.6) величины р и ро равны, соответственно, 1,9 и 1,7 Тор. При указанном выше соотношении рабочего и балластных объёмов такое распределение газа означает, что в области разряда находится не более 20% от его первоначального количества. Для сравнения на рисунке показаны штрихом значения е, которые должны были наблюдаться, если бы разделение соответствовало бародиффузии в неионизованном газе г = (1/д) 1п(р /ро). Видно, что разделительный эффект не следует бародиффузионной формуле. В данных экспериментах, как и в работе [4], величина эффекта по существу определялась рассеиваемой в плазме мощностью W. В то же время трудно полностью связывать наблюдаемое разделение изотопов и с термодиффузией, поскольку максимальные значения екг и гхе (3,5%) получены в условиях, когда практически отсутствует вклад от термодиффузии. Оценка этих условий имеется в работе [И]. [c.342]


    Количественные расчёты с газами и сравнения проводятся обычно при условии приведения изиеренного объёма газа к нормальным ус овиям (температура Оо, давление 760 мм). Если объём газа V измерен при температуре и давлении Р жл, то при нормальных условиях объём 1 0 определяется по формуле [c.60]

    Мономолекулярные плёнки могут существовать в различных видах, соответствующих в двухмерном пространстве поверхностного слоя трём агрегатным состояниям вещества в объёме — твёрдому, жидкому и газообразному. Основным фактором, определяющим устойчивость плёнки, является прочность закрепления молекул на поверхности, т. е. величина силы их притяжения, нормального к поверхности. Основными же факторами, определяющими агрегатное состояние плёнки, являются величина и распределение когезионных сил, действующих между молекулами тангенциально к поверхности. При слабом нормальном притяжении молекул плёнки к жидкой подкладке они нагромождаются друг на друга даже при слабом танге.чциальном сдавливающем усилии, и плёнка не образуется вовсе. Если же притяжение к подкладке велико, а тангенциальная когезия мала, молекулы плёнки движутся по поверхности независимо друг от друга, участвуя в пo тyпiтeльнoм движении ыолекул подлежащей жидкости. Такая плёнка напоминает газ или разбавленный раствор и носит название газообразной или парообразной . Если тангенциальная когезия велика, молекулы слипаются в крупные конденсированные острова , в которых поступательное тепловое движение молекул по поверхности затруднено. Отдельные молекулы могут вылетать за пределы этих островов, заполняя остальную часть поверхности разрежённой парообразной плёнкой. Это стремление вылетать в область разрежённой плёнки аналогично испарению трёхмерного твёрдого тела или жидкости и обусловливает определённое давление, аналогичное давлению насыщенного пара. Давление газообразной плёнки нередко настолько значительно, что поддаётся измерению. [c.32]


Смотреть страницы где упоминается термин Измерения объема и давления газа: [c.173]    [c.150]    [c.343]    [c.343]   
Смотреть главы в:

Анализ газов -> Измерения объема и давления газа




ПОИСК





Смотрите так же термины и статьи:

Давление измерение

Объемы, измерение



© 2025 chem21.info Реклама на сайте