Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Благородные газы электроотрицательность

    У элементов одного периода при переходе от щелочного металла к благородному газу заряд ядра увеличивается, а радиусы атомов и ионов в малых и больших периодах уменьшаются, потенциалы ионизации, сродство к электрону и электроотрицательность увеличиваются. В итоге изменяются химические свойства и термодинамические характеристики. Это общая закономерность изменения свойств в малых и больших периодах наиболее ярко она выражена [c.85]


    Подгруппа брома. Характеристика элементов VII А-групп ы. Поскольку каждый галоген в Периодической системе предшествует инертному или благородному газу, он является самым электроотрицательным элементом соответствующего периода. Действительно, до достижения электронной конфигурации атомов инертных и благородных газов атомам галогенов не хватает лишь одного электрона, вследствие чего для них наиболее характерна [c.468]

    В отличие от атомных масс такие характеристики химических элементов, как радиусы их атомов г, ионизационные потенциалы I, сродство к электрону (СЭ) и электроотрицательность (ЭО) являются периодической функцией заряда ядра. Для элементов главных подгрупп эти параметры изменяются по периоду слева направо в направлении уменьшения радиуса атома и увеличения ионизационного потенциала, сродства к электрону и электроотрицательности, т. е. уменьшения для элементов металлических и усиления неметаллических признаков. Соответственно свойства простых вещеста изменяются от типичного металла — щелочного до типичного неметалла — галогена, после чего период завершается благородным газом. В пределах каждой подгруппы сверху вниз радиусы атомов увеличиваются и соответственно уменьшаются ионизационный потенциал, сродство к электрону и электроотрицательность, т. е. усиливаются металлические свойства простых веществ. Эта общая закономерность нарушается при переходе в III группе от р-элемента 3-го периода (А1) к /7-элементу 4-го периода (Ga). Причиной является уменьшение радиуса атомов в ряду появившихся в 4-м периоде -элементов, которое называют -сжатием . Оно сказывается прежде всего на размере атома первого /7-элемента того же периода Ga. В результате радиус его атома оказывается не больше, а на [c.95]

    Очевидно, у благородных газов электроотрицательность отсутствует, так как внешний уровень в их атомах завершен. [c.60]

    Имеются в виду валентные электроны, т. е. электроны, которые участвуют в образовании химической связи. Очевидно, у благородных газов электроотрицательность отсутствует, так как внешний уровень в нх атомах завершен н устойчив. [c.56]

    Больщая часть перечисленных в табл. 21.4 свойств закономерно изменяется в зависимости от атомного номера элемента. В пределах каждого периода соответствующий галоген имеет почти самую высокую энергию ионизации, уступая только следующему за ним благородному газу. Точно так же каждый галоген в пределах своего периода имеет самую больщую электроотрицательность. В группе галогенов атомные и ионные радиусы увеличиваются с возрастанием атомного номера. Соответственно энергия ионизации и электроотрицательность уменьшаются в направлении от легких к тяжелым галогенам. При обычных условиях галогены существуют, как уже сказано выще, в виде двухатомных молекул. При комнатной температуре и давлении I атм 12 представляет собой твердое вещество, Вг2-жвдкость, а С12 и Р -газы. Высокая реакционная способность р2 очень затрудняет обращение с ним. Хранить Р2 можно в металлических сосудах, например медных или никелевых, так как на их поверхности образуется защитное покрытие из фторида соответствующего металла. Обращение с хлором тоже требует особой осторожности. Поскольку хлор путем сжатия при комнатной температуре можно превратить в жидкость, обычно его хранят и транспортируют в жидкой форме в стальных емкостях. Хлор и более тяжелые галогены обладают большой реакционной способностью, хотя и не такой высокой, как фтор. Они непосредственно соединяются с большинством элементов, за исключением благородных газов. [c.290]


    Основополагающим понятием современной химии является понятие о химическом элементе , т. е. виде атомов с определенной совокупностью свойств. Под свойствами изолированных атомов подразумеваются заряд ядра и атомная масса, особенности электронного строения, потенциалы ионизации, сродство к электрону и электроотрицательность, атомные, орбитальные и ионные радиусы н т. д. Однако необходимо иметь в виду, что изолированные атомы как форма организации вещества могут существовать в природе лишь при достаточно высоких температурах в виде моноатомного пара. Единственным исключением являются благородные газы, для которых при любых условиях и в любом агрегатном состоянии структурной единицей является атом. Все остальные элементы существуют в природе в виде более сложных агрегатов молекул и кристаллов. Таким образом, следует строго различать понятия элемента как вида изолированных атомов и простого вещества как формы существования элемента в свободном состоянии. Следует особо подчеркнуть нетождественность этих понятий хотя бы потому, что один элемент может существовать в виде нескольких простых веществ (аллотропия) .  [c.26]

    Галогены отличаются самым высоким сродством к электрону, так как при присоединении одного электрона к нейтральному атому они приобретают законченную электронную конфигурацию благородного газа. Щелочные металлы характеризуются низким сродством к электрону. Для решения вопроса о том, какой из атомов легче отдает или присоединяет электрон, учитывают оба показателя ионизационный потенциал и сродство к электрону. Полусумма этих величин называется электроотрицательностью (ЭО). [c.30]

    В данной главе будет рассмотрен простой метод описания ковалентных связей с использованием структурных схем Льюиса. Мы занищем льюисовы структуры для известных молекул и ионов и дадим им объяснение, пользуясь представлениями об обобществлении электронных пар и построении замкнутых валентных оболочек такого типа, как у атомов благородных газов. Затем мы объясним степени окисления атомов в соединениях на основе соображений о неравномерности обобществления электронных пар атомами, обладающими разной электроотрицательностью, после чего перейдем к установлению взаимосвязи между кислотностью некоторых молекул и электронным строением их центрального атома. В последней части главы будет показано, как для предсказания формы молекул используется метод отталкивания валентных электронных пар (ОВЭП). [c.465]

    В периодической системе элементов Д. И. Менделеева в пределах периодов с увеличением заряда ядра восстановительные свойства уменьшаются от щелочного металла к благородным газам и увеличиваются окислительные свойства. Объясняется это уменьшением радиусов атомов, увеличением сродства к электрону и увеличением электроотрицательности. Из этого следует, что самыми сильными окислителями являются галогены, кислород. [c.139]

    Характерной особенностью неметаллов является то, что у их атомов застройка наружных электронных оболочек близка к максимальной. Чем правее расположен неметалл, тем выше энергия ионизации, тем больше сродство к электрону. Поэтому атомы неметаллов проявляют тенденцию к формированию электронной оболочки с конфигурацией благородного газа, что реализуется возрастающей слева направо способностью к присоединению электронов. Внутри групп эти закономерности проявляются снизу вверх, поэтому наиболее электроотрицательным элементом является фтор. [c.253]

    Будучи химически связанным, водород сохраняет способность Притягиваться другими электроотрицательными атомами с образованием присущей только ему водородной связи. Атом водорода может такн е и присоединять электрон, превращаясь в отрицательный ион — анион Н . Электронная оболочка этого иона такая же, как у атома гелия Не. В этом отношении он сходен с галогенами (с. 102), анионы которых имеют оболочки типа соседних благородных газов. Поэтому водород иногда относят не к I, а к VII группе таблицы Д. И. Менделеева. [c.98]

    Седьмая группа периодической системы, помимо типических элементов — фтора и хлора, включает элементы подгрупп брома и марганца. Поскольку у типических элементов и представителей подгруппы брома до конфигурации электронных оболочек последующих благородных газов недостает лишь по одному электрону, они функционируют как неметаллы. При этом фтор — наиболее электроотрицательный элемент системы, а хлор и бром ио электроотрицательности близки к азоту. Неметаллический характер иода может быть формально приравнен к сере, так как у этих элементов значения ОЭО совпадают (2,6). [c.349]

    Как самый электроотрицательный из химических элементов (см. табл. 15) фтор во всех соединениях, в том числе и с кислородом (ОРг), проявляет степень окисления —1. Остальные галогены могут проявлять в соединениях и положительную степень окисления. Фтор реагирует почти со всеми простыми и сложными веществами, включая некоторые благородные газы. При реакции с аморфным оксидом кремния(IV) фтор воспламеняется  [c.258]


    Таким образом, роль лигандов В соединениях благородных газов могут играть лишь наиболее электроотрицательные атомы типа фтора [c.543]

    Для построения шкалы электроотрицательностей Сандерсон ввел определение величины, названной им относительной устойчивостью элемента. Эта величина представляет собой отношение средних электронных плотностей атома рассматриваемого элемента и атома эквивалентного благородного газа. Средняя электронная плотность атома вычисляется путем деления порядкового номера элемента (равного числу электронов в его атоме) на его атомный объем, вычисляемый по атомному радиусу. Средняя электронная плотность эквивалентного благородного газа определяется путем линейной интерполяции соответствующих данных для двух ближайших по периодической таблице благородных газов. Например, для того чтобы определить электронную плотность эквивалентного благородного газа для зЬ1, следует прибавить к электронной плотности гНе одну восьмую часть разности между электронными плотностями гНе и при определении электронной плотности эквивалентного благородного газа для 4Ве нужно прибавить к электронной плотности Не две восьмых части этой же разности и т. д. Относительные устойчивости элементов зависят от их электроотрицательности, которая характеризует относительную способность атомного ядра притягивать электроны. Поэтому по данным об относительных устойчивостях элементов можно построить шкалу их электроотрицательностей. [c.103]

    В периодической системе элементов наблюдается увеличение сродства к электрону и электроотрицательности при переходе слева направо вдоль каждого из периодов, что соответствует возрастанию заряда ядра элементов и, следовательно, числа их валентных электронов, а также уменьшению размеров атомов. Сродство к электрону и электроотрицательность достигают максимальных значений у галогенов — элементов седьмой группы, а затем резко убывают до нуля при переходе к благородным газам — элементам нулевой группы. Другая закономерность изменения сродства к электрону и электроотрицательности заключается в том, что они увеличиваются при переходе снизу вверх вдоль каждой группы периодической системы, что соответствует уменьшению атомного радиуса элементов. В связи с этим следует ожидать, что наибольшей способностью к восстановлению должен характеризоваться фтор. Способность к восстановлению [c.323]

    Все -металлы имеют по одному или два валентных электрона. Поскольку эти металлы имеют низкие значения потенциалов (энергий) ионизации (ПИ) и электроотрицательностей (ЭО) (табл. 17.1), они могут легко отдавать свои в-электроны, образуя ионы с устойчивыми электронными конфигурациями благородных газов. [c.211]

    При взаимодействии атомов, равных (атомы одного и того же элемента) или близких по электроотрицательности, переноса электронов не происходит Образование электронной конфигурации благородного газа для таких атомов происходит вследствие обобщения двух, четырех или шести электронов взаимо- [c.32]

    Прочность связи ме5кду электроном и ядром. Энергия ионизации. Правило октета. Инертные (благородные) газы. Электроотрицательность [c.48]

    Каждый ион, входящий в состав хлорида натрия, приобретает электронную конфигуращ1ю атома одного из благородных газов ион натрия имеет конфигурацию неона, Не, а хлорид-ион имеет конфигурацию аргона, Аг. Перенос электрона от натрия к хлору обусловлен тем, что хлор-более электроотрицательный элемент (электроотрицательность На 0,93, а хлора 3,16). Но что должно происходить в молекуле Н1, образованной элементами с приблизительно одинаковой электроотрицательностью (2,20 и 2,66 соответственно)  [c.466]

    Как показывает табл. 4.2, электроотрицательность закономерно изменяется в зависимости от положения элемента в периодической системе. В начале каждого периода находятся элементы с наиболее низкой электроотрицательностью — типичные металлы, в конце периода (перед благородными газами) — элементы с наивысшей электроотрицательностью, т. е. типичные неметаллы. У элементов одной и той же подгруппы электроотрицательность с ростом числа электронных оболочек проявляет тенденцию к уменьшению. Таким образом, чем более типичным металлом является элемент, тем ниже его электроотрица-тельностъ чем более типичным неметаллом является элемент, тем выше его электроотрицательность. [c.117]

    Типичной реакцией галогенопроизводных — за исключением винил галогенидов н арилгалогенидов, для которых связь С—X более прочная, чем в алкилгалогенидах, — является нуклеофильное замещение. К особо реакционноспособным галогено-производньш относятся бензилгалогениды СвНзСИгХ и лллил-галогениды СН2=СНСН2Х. Предпосылками такой реакции служат как электроотрицательность атома галогена (в результате чего на связанном с ним атоме углерода появляется частичный положительный заряд, способный связывать нуклеофильный реагент), так и то обстоятельство, что отщепляющийся в ходе реакции галогенид-анион очень устойчив (его электронная конфигурация такая же, как у атомов благородных газов). Кроме того, замещение облегчается значительной поляризуемостью связи С—X (только связь С—Р почти не поляризу- [c.138]

    При образовании гомоатомных соединений (простых веществ) все эффекты, связанные с разностью электроотрицательностей взаимодействующих атомов, исключаются. Поэтому в простых веществах не реализуются полярные, а тем более преимущественно ионные связи. Следовательно, в простых веществах осуществляется лишь металлическая и ковалентная связь. Следует при этом учесть и возможность возникновения дополнительного ван-дер-ваальсов-ского взаимодействия. Преобладание вклада металлической связи приводит к металлическим свойствам простого вещества, а неметаллические свойства обусловлены преимущественно ковалентным взаимодействием. Для образования ковалентной связи взаимодействующие атомы должны обладать достаточным количеством валентных электронов. При дефиците валентных электронов осуществляется коллективное электронно-атомное взаимодействие, приводящее к возникновению металлической связи. На этой основе в периодической системе можно провести вертикальную границу между элементами П1А- и 1УА-групп, слева от которой располагаются элементы с дефицитом валентных электронов, а справа — с избытком. Эта вертикаль называется границей Цинтля Ее положение в периодической системе обусловлено тем, что в соответствии с современными представлениями о механизме образования ковалентной связи особой устойчивостью обладает полностью завершенная октетная электронная 5 /гр -конфигурация, свойственная благородным газам. Поэтому для реализации ковалентного взаимодействия при образовании простых веществ необходимо, чтобы каждый атом пмел не менее четырех электронов. В этом случае возможно возникгювение четырех ковалентных связей (5/) -гибридизация ), что и реализуется у элементов 1УА-группы (решетка типа алмаза у углерода, кремния, германия и а-олова с координационным числом 4). Если атом имеет 5 валентных электронов (УА-группа), то до завершения октета ему необходимо 3 электрона. Поэтому он может иметь лишь три ковалентные связи с партнерами (к. ч. 3). В этом случае кристалл образован гофрированными сетками, которые связаны между собой более слабыми силами. Получается слоистая структура, в которой расстояние между атомами, принадлежащими одному слою, намного меньше, чем между атомами различных слоев (черный фосфор, мышьяк, сурьма)  [c.29]

    Водород занимает в периодической системе особое место. Двойственная роль водорода обусловлена тем, что, с одной стороны, у него на валентном уровне находится единственный электрон (как у щелочных металлов), а с другой стороны, в силу специфики 1-го периода ему недостает всего одного электрона до устойчивой электронной оболочки благородного газа (как у галогенов). По значению ОЭО (2,1) он занимает среднее положение среди элементов (0Э0р=4,1, ОЭОсз=0,7). Поэтому с менее электроотрицательными элементами он выступает в роли анионообразователя, а с более электроотрицательны.ми является катионообразователем. С учетом общих правил номенклатуры бинарных соединений к гидридам относятся только соединения водорода, в которых он отрицательно поляризован, т. е. в основном его соединения с металлами. Соединения водорода с неметаллами с этой точки зрения не являются гидридами. Их название определяется видом анионообразователя. Так, существуют галогениды водорода (НС1, НВг и т. п.), [c.63]

    Характеристика элементов УПА-группы. Поскольку каждый галоген в периодической системе предшествует инертному или благородному газу, он является самым электроотрицательным элементом соответствующего периода. Действительно, до достижения электронной конфигурации атомов инертных и благородных газов пз пр атомам галогенов не хватает лишь одного электрона, вследствие чего для них наиболее характерна тенденция к присоединению электрона. Тем не менее с ростом электроноемкости атомов галогенов имеет место ослабление неметалличности и, соответственно, нарастание признаков металличности. Об этом свидетельствуют уменьшение потенциалов ионизации, стандартных редокс-потенциалов и ОЭО. Если бром еще является довольно сильным окислителем, иод уже относится к числу мягких окислителей. К тому же иод представляет собой твердое вещество с металлическим блеском и проявляет заметные признаки амфотерности. [c.365]

    Для водорода характерно образование иона НдО в воде, а галогены образуют соединения с полярной ковалентной связью, а которых их окислительное число бывает +1 и выше (за исключением фтора). Водород имеет меньшее сродство к электрону и меньшую электроотрицательность по сравнению с галогенами. В этом отношении он близок к углероду,связь С—Показывается менее полярной, чем связи углерода е другими элементами. У атомов Н и С валентные электронные уровни заполнены наполовину. Однако все же водород имеет наибольшее сходство с галогенами, в пользу чего говорят и многие результаты сравнительных расчетов (гл. II, 6). Так, М. X. Карапетьянц [10] показал, что теплоты испарения водорода и галогенов при сопоставлении их с теплотами испарения благородных газов ложатся на одну прямую. Тоже получаются прямые при сопоставлении энергии кристаллических решеток фторидов и гидрилов щелочных металлов, при сопосталении потенциалов ионизации атомов галогенов и водорода и энергии связи С—Э (где Э—Н, F, С1, Вг, I) и т. д. [c.312]

    С нач. 20 в. осн. внимание в Н. х. уделяется составу и строению хим. соединений. А. Ле Шателье, Н. С. Курнаков, Г. Тамман, У. Робертс-Остен изучают сплавы металлов и металлиды. Н. С. Курнаков создает основы термич. анализа, А. Вернер, И. Тиле, Л. А. Чугаев и др. разрабатывают основы координац. химии. В- Коссель, Г. Льюис и др. создают электронную теорию валентности. Вводятся понятия об ионных и ковалентных связях, электроотрицательности, измеряются д и1пы связей и валентные углы для мн. простых молекул, нх энергии диссоциации, определяется и уточняется кристлл п1ч. структура в-в. Синтезируются новые классы соединений, напр, фториды благородных газов (Н. Бартлетт, 1962), кластеры, соединения внедрения графита. [c.373]

    Потенциал ионизации элемента и его сродство к электрону являются количественными характеристиками способности атомов этого элемента терять или приобретать электроны при определенных условиях. Наряду с данными о размерах атома, его порядковом номере и валентности они позволяют делать предсказания о химических свойствах элементов, однако на практике учет всех перечисленных факторов оказывается довольно сложным. Гораздо удобнее пользоваться обобщенной эмпирической характеристикой химических свойств элементов, называемой электроотрицательностъю. Под электроотрицательностью элемента понимают относительную способность его атомов притягивать электроны для оценки этой способности устанавливается условная шкала. Крайние точки этой шкалы соответствуют электроотрицательности цезия 0,7 и фтора 4,0. В отличие от сродства к электрону и потенциала ионизации электроотрицательность рассматривается как характеристика элементов в любом окружении, независимо от того, свободные ли это атомы или части молекулы. Как и следовало ожидать, периодические изменения электроотрицательности элементов соответствуют изменениям их потенциалов ионизации, сродства к электрону, атомных размеров и т.п., причем фтор является наиболее электроотрицательным элементом, а цезий—наименее электроотрицательным, не считая благородных газов. [c.102]

    Так как у элементов одного периода электроны заполняют оболочку с одним и тем же главным квантовым числом, атомные (а также ковалентные и ионные) радиусы при переходе от щелочного металла к благородному газу у меньшаются, а в грулшах (особенно в подфуппах А) с ростом порядкового номера увеличиваются. Таким образом, по диагонали Периодической системы встречаются атомы элементов с примерно одинаковыми атомньпш радиусами, а значит со сходными свойствами. Периодичность в изменении химических свойств элементов объясняется периодичностью повторения сходных электронных конфигураций с ростом заряда ядра или порядкового номера элемента, например, периодически изменяется электроотрицательность - условная величина, характеризующая способность атома в молекуле к притяжению валентные электронов. В табл. 2.2 приведены значения электроотрицательностей химических элементов. Как видно, для элементов подфупп А электроотрицате.льность растет в периодах и падает в грулшах с увеличением порядкового номера. Периодически меняются и л агнитные свойства переходных металлов. [c.21]

    Неметаллы — к неметаллическим элементам относятся благородные газы (Не, N0, Аг, Кг, Хе, Нп), галогены (Р, С1, Вг, I, А1), четыре элемента из подгруппы хапькогенов (0,8,8е, Те), а также Н, В, С, 81, М, Р, Аз. За исключением водорода, гелия и бора, остальные неметаллы характеризуются наличием четырех (и более) электронов на наружной электронной оболочке атомов. Чем правее в периоде расположен Н., тем выше его электроотрицательность и сродство к электрону и, следовательно, тем выше окислительные свойства. Внутри групп эти закономерности проявляются снизу вверх, поэтому наиболее электроотрицательным элементом явпяется фтор. Для благородных газов N6, Аг, Кг, Хе и Рп электронная конфигурация наружных оболочек соответ- [c.200]


Смотреть страницы где упоминается термин Благородные газы электроотрицательность: [c.36]    [c.61]    [c.36]    [c.289]    [c.152]    [c.311]    [c.268]    [c.387]    [c.390]    [c.170]    [c.236]    [c.356]    [c.47]    [c.47]   
Справочник по общей и неорганической химии (1997) -- [ c.40 ]




ПОИСК





Смотрите так же термины и статьи:

Газ благородные

Газы благородные

Электроотрицательность



© 2025 chem21.info Реклама на сайте