Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы определения поверхности по изотермам адсорбции

    Простых и доступных методов прямого определения избытка растворенного вещества в адсорбционном слое на подвижных границах раздела пока не существует. Однако на поверхностях раздела жидкость — газ и жидкость — жидкость может быть точно измерено поверхностное натяжение, поэтому для определения адсорбции особенно важным является уравнение изотермы адсорбции Гиббса (1878). Гиббс установил зависимость между поверхностным избытком растворенного вещества Г и изменением поверхностного натяжения. [c.330]


    С. Брунауэр, П. Эммет и Е. Теллер (1935—1940) создали наиболее общую теорию полимолекулярной адсорбции (сокращенно — теорию БЭТ), в которой описание процессов адсорбции увязывается с представлениями и методами статистической физики. Используя ряд положений теории Ленгмюра, они сделали дополнительное допущение об образовании на поверхности адсорбента последовательных комплексов между адсорбционным центром и одной, двумя, тремя и т. д. молекулами газа. Адсорбция рассматривается как ряд последовательных квазихимических реакций со своими константами равновесия. На активных центрах поверхности адсорбента могут образоваться конденсированные полимолекулярные слои. Авторы теории на основе уравнения изотермы адсорбции Ленгмюра получили приближенное уравнение полимолекулярной адсорбции, которое щироко применяется для определения удельной поверхности адсорбентов и теплоты адсорбции. [c.338]

    В первых трех методах определению удельной поверхности адсорбента должно предшествовать построение изотермы адсорбции. [c.66]

    В монографии (1-е изд.— 1973 г.) рассматриваются адсорбционные и хроматографические методы исследования хи-мин поверхности н структуры твердых тел. Подробно описаны статические н газохроматографические способы получения изотерм адсорбции газов н паров, определения теплот адсорбции и теплоемкости адсорбционных систем, структурных характеристик твердых тел, спектроскопические методы исследования химической природы поверхности, методы изучения адсорбции из бинарных и многокомпонентных растворов и их применение в жидкостной молекулярной хроматографии. В приложении приведены способы получения адсорбентов и носителей и химического модифицирования их поверхности для использования в молекулярной хроматографии. [c.215]

    Методы определения поверхности по изотермам адсорбции [c.295]

    На простейшем примере глобулярных адсорбентов рассмотрен механизм формирования структуры, как результат объемной упаковки глобул, и выведены основные закономерности ее интерпретации. Дан критический анализ и рассмотрены пределы применимости ныне используемых методов определения удельной поверхности высокодисперсных и пористых тел. Кроме того, описан новый метод, позволяющий по изотермам адсорбции, выраженным в относительных координатах, характеризовать структурные типы адсорбентов и детализировать промежуточные структуры, составляющие большинство среди реальных пористых тел. [c.4]


    Вторая, более важная, причина обусловлена многообразием отраслей экономики и науки, с которыми, вероятно, придется иметь дело исследователю, решающему промышленную проблему. Так, например, химик, занимающийся разработкой окислительного процесса, может обнаружить, что осуществляемые им исследования привели его в область неорганической химии металлов, поскольку металлы являются активными ингредиентами используемого им катализатора. Очень скоро ему также понадобится информация о физических характеристиках носителя катализатора, и он примется читать литературу о размерах пор, площади поверхности, изотермах адсорбции, дифференциальном термическом анализе, исследовании с помощью электронного микроскопа и о целом ряде других методов определения свойств поверхности. Причем все это он будет осмысливать не только как ученый, но и как производственник. Аспиранту, занимающемуся научными исследованиями в университете, вероятно, приходится переваривать гораздо меньший объем литературы [c.160]

    В таблицах 83 и 85 дается сопоставление величин удельных поверхностей, определенных из изотерм адсорбции различными методами. [c.724]

    При изучении физической адсорбции азота на железном катализаторе Бентон и Уайт [21] отметили два резких излома на -образной изотерме при —191,5°. Они объяснили эти изломы заполнением первого и второго адсорбционных слоев. Хотя в более поздней работе [22] было показано, что эти изломы исчезают, если ввести поправки на отклонение азота от законов идеальных газов, — это предположение Бентона послужило исходным пунктом для исследований Эммета и автора, приведших к методу определения поверхности по газовой адсорбции- ]. [c.387]

    Величина коэффициента к неизвестна, поэтому авторы назвали этот метод относительным. Для определения к необходимы измерения изотермы адсорбции на адсорбенте с известной поверхностью (см. ниже об абсолютном методе определения поверхности). Авторы допускают, что величина к зависит только от природы адсорбирующегося пара и не зависит от природы поверхности, что вряд ли справедливо. [c.724]

    Работа 3. Построение изотермы адсорбции бензола и определение удельной площади поверхности катализаторов методом проявительной хроматографии [c.433]

    В задачу настоящего краткого обзора не входит критическое рассмотрение границ применимости описанного метода измерения поверхности. Отметим, однако, что данный метод дает очень хорошее приближение истинная величина поверхности, определяемая совершенно независимым методом интерпретации изотермы газовой адсорбции [29] или другим независимым методом определения поверхности [30], близка к найденной по БЭТ. Так, например, поверхность непористой газовой сажи [31], стеклянных [32] или кварцевых шариков, полученная методом БЭТ, хорошо согласуется с поверхностью, определяемой на основании данных о величине среднего диаметра отдельных частиц. [c.729]

    Термодинавическое описание адсорбционных систем. Реальная система с поверхностью раздела и система сравнения. Адсорбция как избыточная величина. Уравнения Гиббса для поверхности. Выражение химического потенциала адсорбированного вещества через адсорбцию константа Генри для адсорбционного равновесия, ее определение хроматографическим методом. Изотерма адсорбции, коэффициент активности адсорбированного вещества, поверхностное давление. [c.126]

    Уравнение (1У-45) представляется практически важным, несмотря на допущения (мгновенное установление равновесия и др.), сделанные при его выводе. Здесь уместно провести аналогию с проявительными методами определения поверхности твердых тел, также основанными на использовании уравнения идеальной нелинейной хроматографии. Удельные поверхности твердых тел, измеренные статическими методами и импульсным хроматографическим методом (расчет на основе уравнения идеальной нелинейной хроматографии), достаточно хорошо совпадают. Причем опытные данные не обнаруживают заметного влияния скорости потока газа-носителя на форму изотермы, рассчитанной по элюционной кривой [71, 72]. Поэтому допущение о мгновенном установлении равновесия в обычных условиях хроматографического эксперимента (время установления равновесия составляет около 10 3 с [60]) можно считать вполне оправданным, и уравнение типа (1 У-45) можно использовать в газо-жидкостной хроматографии для определения нелинейных изотерм адсорбции (например, на поверхности раздела НЖФ — твердый носитель [73, 74]). Конечно, в дальнейшем развитие более строгих методов на основе неравновесной теории хроматографии [75—77 78, с. 32 79, с. 24] позволит более четко выяснить механизм процесса и повысить надежность сорбционных измерений для полифазных сорбентов. [c.90]

    II типу изотерм по классификации БЭТ, авторы нашли, что точке перехода от монослоя к полислоям соответствует перегиб верхней части хроматографического пика. Импульсно вводя в колонку пробы адсорбата различной величины, можно быстро определить количество адсорбата, отвечающее точке перехода на изотерме. Затем, пользуясь известными методами, можно рассчитать поверхность твердого тела. Ряд авторов - описали хроматографические методы определения поверхностей адсорбентов и катализаторов на основе измерения удельных удерживаемых объемов. Известны хроматографические методы измерения величины активной части поверхности сложных и нанесенных катализаторов - - , определения количества и силы кислых центров каталитической поверхности й т. д. В ряде работ - показана возможность изучения хроматографическим методом кинетики обратимой адсорбции. Однако привлекаемый для этих целей математический аппарат довольно сложен и нередко для обработки экспериментальных данных требует применения вычислительных машин. [c.29]


    Методом математического планирования эксперимента было найдено [3], что точки, расположенные в определенных местах концентрационного треугольника, более удобны для построения поверхности. Так как обычно изменения концентраций раствора в результате адсорбции бывают сравнительно малыми и равновесные концентрации, используемые для построения поверхности изотермы адсорбции, сравнительно мало отличаются от исходных растворов, то можно готовить исходные растворы с концентрациями, соответствующими выбранным точкам в треугольнике. Этих тройных смесей должно быть не менее 12 состав их приведен в табл. 55. [c.402]

    Сорбционные свойства единицы поверхности кварца по отношению к парам воды неоднократно изучались. Сопоставление полученных результатов, проведенное для теплот адсорбции паров воды и для теплот смачивания водой, указывает на сильную зависимость перечисленных величин от дисперсности и метода дисперги])ования. П])и-чину такой зависимости абсолютных изотерм адсорбции паров воды объясняют иногда наличием в некоторых природных образцах кварца субмикроскопических трещин, доступных для молекул воды, но недоступных д-пя молекул азота [230]. Последнее приводит к запи кенным значениям удельной поверхности, определенной из изотермы адсорбции азота, и, следовательно, к завышенным абсолютным величинам адсорбции паров воды. Такое объяснение кажется маловероятным, поскольку в процессе тонкого измельчения раскол частиц кварца происходит именно по таким микротрещинам, являющимся наиболее слабыми местами, и, следовательно, диспергирование способствует уменьшению различий в пористости порошков различного происхождения. Никаких экспериментальных подтверждений наличия ультрапор в исследованных образцах пе приводится. [c.252]

    Статические методы измерения адсорбционных равновесий (изотерм или изостер адсорбции) обладают тем существенным преимуществом, что, используя их, можно очищать поверхность адсорбента в вакууме и как угодно долго дожидаться установления адсорбционного равновесия. Однако эти методы встречают и существенные затруднения. Во-первых, их трудно применить для изучения весьма важной области очень малых (нулевых) заполнений поверхности, когда межмолекулярным взаимодействием адсорбат — адсорбат можно пренебречь. Поэтому для определения такой термодинамической характеристики межмолекулярного взаимодействия адсорбат— адсорбент, как константа Генри, приходится экстраполировать к нулевому заполнению изотермы адсорбции, измеренные при более высоких заполнениях поверхности адсорбента. Эта экстраполяция связана с рядом затруднений. При сравнительно низких температурах, при которых обычно проводятся статические измерения изотерм адсорбции, сильнее сказывается влияние неоднородности поверхности твердого тела. Во-вторых, обычными статическими методами при невысоких температурах можно изучать адсорбцию лишь небольшого количества достаточно летучих. и простых по структуре молекул веществ с небольшой молекулярной массой. В-третьих, применение статических методов, особенно при работе с труднолетучими веществами, требует высокой чистоты этих веществ, так как летучие примеси могут привести к ошиб- [c.156]

    На рис. 8.8 белыми точками представлена изотерма адсорбции пара -гексана на ГТС при комнатной температуре, полученная обычным вакуумным статическим методом. В области малых концентраций (давлений) гексана в газовой фазе эта изотерма круто поднимается, причем первые более или менее надежно измеренные точки дают величины Г не менее 0,2 мкмоль/м , что соответствует заполнению гексаном уже более 5—7% поверхности. Определить отсюда ход изотермы адсорбции в области более низких заполнений и константу Генри невозможно из-за ненадежности экстраполяции. Черными точками представлена та же изотерма адсорбции в области низких и средних заполнений поверхности ГТС, полученная описанным методом достижения адсорбционного равновесия с использованием насыщения газа-носителя паром гексана в криостате (для создания малых его концентраций) и тепловой десорбции для определения малых значений адсорбции. Из рисунка видно, что при этом можно исследовать изотерму адсорб- [c.157]

    Получив с помощью уравнения (116) изотерму адсорбции, можно ее обработать рассмотренными в главах XVI, XVII и XIX способами и получить, например, методом БЭТ (см. сгр. 454) емкость плотного монослоя и величину удельной поверхности адсорбента, а также получить изменение химического потенциала исследуемого вещества при адсорбции, откуда можно вычислить зависимость коэффициента активности адсорбата от заполнения иоверхности. Из серии хроматограмм, определенных при разных температурах, можно получить соответствующую серию изотерм адсорбции и определить нз них зависимость дифференциальной теплоты адсорбции от заполнения поверхности, дифференциальные энтропии и другие термодинамические характеристики адсорбции при разных заполнениях. Результаты таких газо-хроматографических исследований при благоприятных условиях опыта близки к результатам статических методов. [c.592]

    Межмолекулярное взаимодействие компонентов раствора с адсорбентом и друг с другом на поверхности и в объеме раствора. Взаимное вытеснение молекул с поверхности адсорбента. Гиббсовская адсорбция, химический потенциал, коэффициент активности и константа Генри для адсорбции компонентов раствора. Изотермы гиббсовской адсорбции из бинарных и трехкомпонентных растворов. Адсорбция из растворов ограниченно растворимых компонентов, капиллярное расслаивание в порах адсорбентов. Влияние температуры. Определение константы Генри и изотермы адсорбции методом жидкостной хроматографии. [c.248]

    Другой метод определения удельной поверхности адсорбента, достаточно простой и чувствительный и получивший большое распространение, называется методом тепловой десорбции. Он позволяет определять удельную поверхность в широком интервале значений— от 0,01 до 102 м /г. Метод предложен Нельсоном и Эггерт-соном [101] и Грубнером [102] и усовершенствован Буяновой, Гудковой и Карнауховым [103]. Он состоит в получении десорбционной проявительной хроматограммы какого-либо газа, вычислении по полученным данным изотермы адсорбции и расчета емкости монослоя и площади поверхности адсорбента. [c.169]

    Известны другие, более трудоемкие хроматографические методы определения изотерм адсорбции — методы фронтальной хроматографии , хроматермографии и тепловой де-сорбции . Эти методы применимы для адсорбентов и катализаторов любой пористой структуры. Сняв хроматографически изотерму адсорбции, можно рассчитать удельную поверхность катализатора. Новый экспрессный метод определения поверхности твердых тел предложен недавно Куге и Яши-кава Ч Для систем адсорбент — адсорбат, соответствующих II типу изотерм по классификации БЭТ, авторы нашли, что точке перехода от монослоя к полислоям соответствует перегиб верхней части хроматографического пика. Импульсно вводя в колонку пробы адсорбата различной величины, можно быстро определить количество адсорбата, отвечающее точке перехода на изотерме. Затем, пользуясь известными методами, можно рассчитать поверхность твердого тела. Ряд авто-ров описали хроматографические методы определения поверхностей адсорбентов и катализаторов на основе измерения удельных удерживаемых объемов. Известны хроматографические методы измерения величины активной части поверхности сложных и нанесенных катализаторов определения количества и силы кислых центров каталитической поверхности и т. д. В ряде работ - показана возможность изучения хроматографическим методом кинетики обратимой адсорбции. Однако привлекаемый для этих целей математический аппарат довольно сложен и нередко для обработки экспериментальных данных требует применения вычислительных машин. [c.29]

    С этим связан недостаток их метода определения-поверхности, так как допущение о начале капиллярной конденсации, происходящем обязательно на поверхности мономолекулярного слоя, игнорирует возможную полимолекулярную адсорбцию паров, а подчинение первоначального адсорбционного процесса вплоть до образования конденсированного слоя уравнению Лэнгмюра не отвечает действительности. Поэтому метод Кистлера, Фишера и Фримена подвергся критике со стороны защитника полимолекулярной теории адсорбции паров Эмметта . Сравнительное применение методов Брунауера, Эмметта и Теллера и Гаркинса и Юра, с одной стороны, и методов Кистлера, Фишера и Фримена и Гарвея, с другой стороны, сделанное Джойнером, Вейнбергером и Монтгомери , к изотермам адсорбции паров азота и бутана на различных адсорбентах показало, что величины в, получаемые по методам капиллярной конденсации, значительно превышают величины 5, определяемые двумя первыми методами, которые давали близкие результаты. Это, казалось, подтверждало критику методов капиллярной конденсации.  [c.186]

    Детальный анализ процессов адсорбции на неоднородных поверхностях с использованием обоих указанных методов впервые осуществлен Рогинским. При определении количества адсорбированного вещества методом интегрирования важен выбор величин, являющихся устойчивыми характеристиками поверхности. Такой устойчивой и удобной характеристикой служит теплота адсорбции. При этом на неоднородной поверхности каждой заданной степени заполнения отвечает строго определенная теплота адсорбции. Эта связь между теплотой адсорбции и степенью заполнения и определяет возможность перехода к соответствующим изотермам адсорбции. Для большей точности необходимо учитывать энтропийные слагаемые, поскольку они по своей величине могут быть соизмеримы с теплотой адсорбции. Однако значения А5 при переходе молекулы из объема на поверхность в адсорбированное состояние определяются различиями в характере степеней свободы молекулы в газообразном состоянии и той же молекулы в поверхностном слое. Эти различия часто имеют одну и ту же величину для разных участков поверхности и в первом приближении ими можно пренебречь. [c.48]

    Если пренебречь 1/а1п С, то в результате получается логарифмическая изотерма адсорбции. Наконец, при определенных значениях констант а и 1 1 получаем уравнение Фрейндлиха. В связи с этим возникла острая необходимость в развитии экспериментальных методов, которые позволили бы отличать эффекты неоднородности от эффектов отталкивания. Это тем более необходимо, поскольку кинетика гетерогенных процессов описывается уравнениями, исходящими из адсорбционных изотерм. Поэтому вопрос о наличии неоднородности поверхности или сил отталкивания, возможность выбора между ними или же возможность учета обоих типов эффектов приобретает важное значение не только для теории и механизма адсорбции, но и для определения механизма каталитических реакций. [c.53]

    Динамический метод заключается в пропускании через слой адсорбента тока инертного газа, содержащего пары адсорбирующегося вещества, и измерёйии нарастания его концентрации в газе за слоем адсорбента. Одним из вариантов динамического метода определения величины адсорбции и удельной поверхности является проявительный метод, основанный на использовании уравнений нелинейной равновесной хроматографии. Метод позволяет построить изотерму адсорбции по форме выходной кривой хроматографического пика. [c.243]

    Работы Родина представляют, видимо, наиболее хороший пример совпадения значений удельной поверхности, определяемой методом БЭТ, и геометрической площади весьма тщательно приготовленных металлических поверхностей. Используя чувствительные микровесы (стр. 371), Родин [39, 48] мог измерять адсорбцию вплоть до 10 г азота с точностью 0,2-10 г на монокристаллах меди и цинка в виде электрополированных тонких пластин. Так как геометрическая площадь была известна, фактор шероховатости г, равный отношению площади, участвующей в адсорбции, к геометрической площади, может быть сразу рассчитан по величине удельной поверхности, определенной по изотерме адсорбции. Его значения, полученные при использовании величин площади поперечного сечения азота, равной [c.83]

    Благодаря тому, что при хемосорбции водорода один атом этого газа прикрепляется к одному атому поверхности металла, адсорбция водорода может служить методом определения поверхности металлических катализаторов, осажденных на инертном носителе, практически не адсорбирующем водород. Этот метод Спенадел и Будар [11] применяли, например, для оценки площади поверхности платиновой черни, нанесенной на окись алюминия. Они измерили адсорбцию водорода при 250° и получили (с учетом диссоциации водорода) изотермы ленгмюров-ского вида. Они нашли, что при давлении 240 мм рт. ст. достигается предельная адсорбция (насыщение), равная [c.291]

    В этой работе мы не имеем возможности останавливаться подробно на некоторых неадсорбционных методах определения удельной поверхности, поэтому ограничимся только кратким упоминанием некоторых более новых из них . Мы уже говорили о микроскопических и электронномикроскопических методах определения внешней поверхности адсорбентов. Предложены методы определения поверхности адсорбентов сравнением скоростей растворения непористых пластинок и высокодисперсного материала. Пальмер и Клэрк э определили, таким образом, поверхность порошка кварцевого стекла, сравнивая скорости его растворения в плавиковой кислоте со скоростью растворения кварцевого стекла с известной поверхностью, и нашли для порошка величину равной 4690 см /г. Они исследовали изотермы адсорбции различных паров этим образцом. Позже Брунауер, Эмметт и Теллер обработали эти результаты предложенным ими методом и нашли для удельной поверхности величину в 5640 см /г, т. е. близкую к полученной сравнением скоростей растворения. Это [c.193]

    Площади поверхности, объем пор и электронные микрофотографии. Довольно наглядную картину геометрии частиц кизельгура можно получить при изучении площади поверхности [56, 61], объема пор [60] и электро-номикрофотограмм. Методы определения этих свойств уже рассматривались в гл. II. Эти данные имеют большое значение, ибо структура пор и плотность катализаторов зависят, по крайней мере до некоторой степени, от свойств кизельгура, используемого в качестве носителя. Площади поверхности кизельгуров, определенные по изотермам адсорбции азота при —195°, колеблются от 15 до 37 м /г для природных веществ, в то время как прокаленные и подвергнутые термощелочной обработке образцы имеют площади от 2 до 6 м /г. [c.138]

    Наконец, третий метод, получивший большое распространение и являющийся достаточно простым и чувствительным, называется методом тепловой десорбции. Он позволяет определять удельную поверхность в широком интервале значений— от 0,01 до нескольких сотен квадратных метров на грамм. Предложен метод Нельсоном и Эггертсоном [19], Грубнером [20] и усовершенствован Буяновой, Гудковой и Карнауховым [21]. Метод состоит в следующем. Получают десорбционную кривую какого-либо газа (лучше аргона), характеризующую изменение его концентрации при десорбции. Вычисляют по полученным данным изотерму адсорбции. Рассчитывают абсолютную величину адсорбции, т. е. поверхностную концентрацию а монослоя. Отношение адсорбции а, определенной методом десорбции, к а дает поверхность адсорбента 5 . [c.118]

    Однако и эти упрощенные методы связаны с применением высоковакуумных установок, жидкого азота и малодоступны лаборатории периферийных катализаторных фабрик. Большой интерес в связи с этим представляет динамический метод исследования адсорбции наров органических соединений, заключающийся в весовом контроле адсорбции твердым сорбентом наров из потока газоносителя при атмосферном давлении и комнатной температуре. Однако несмотря па то что этот метод позволяет измерить изотермы адсорбции, он не применялся для определения величины поверхности катализаторов и лишь в 1951 г. Фрике с сотрудниками [41 и Девис [5] использовали для этой цели изотермы паров бензола, измеренные динамическим методом. [c.108]

    Известны другие, более трудоемкие хроматографические методы определения изотерм адсорбции — методы фронтальной хроматографии , хроматермографии и тепловой десорбции — . Эти методы применимы для адсорбентов и катализаторов любой пористой структуры. Сняв хроматографически изотерму адсорбции, можно рассчитать удельную поверхность катализатора. Новый экспрессный метод определения поверхности твердых тел предложен недавно Куге и Яши-кава . Для систем адсорбент — адсорбат, соответствующих [c.29]

    В ряде работ указывалось па наличие на поверхности борофосфатных катализаторов центров кислотноосновного типа. Для определения силы центров и их числа применяли несколько методов. В работе [29] был использован метод исследования кислотности, основанный на высокотемпературной адсорбции аммиака. Число активных центров, определенное по изотерме адсорбции, составляло 2= 1,4-10 центров/г. [c.363]

    В данной работе следует построить изотермы адсорбции толуола и определить удельную площадь поверхности катализатора статическим методом. Для определения удельной площади поверхности катализатора используют весы Мак-Бэна. Газ приводится в соприкосновение с адсорбентом и после установления равновесия отмечают показания манометра и количество адсорбированного газа при данном давлении на весах Мак-Бэна. Проведя такие измерения при различных давлениях, вычерчивают изотерму адсорбции. По изотерме адсорбции и поверхности, занимаемой адсорбированной молекулой вещества, определяют удельную площадь поверхности адсорбента. [c.429]

    Образование мономолекуляриого слоя определяется ио изотерме адсорбции. Этот метод называется методом Брунауэра, Эммета и Теллера или сокращенно методом БЭТ. В качестве адсорбтива при определении удельной поверхности вяжущих веществ часто используется азот. Адсорбция проводится прн температуре кипения ]<ислорода или азота. В этом случае метод называется методом низкотемпературной сорбции азота. [c.91]


Смотреть страницы где упоминается термин Методы определения поверхности по изотермам адсорбции: [c.94]    [c.310]    [c.68]    [c.290]    [c.61]    [c.48]   
Смотреть главы в:

Технология катализаторов -> Методы определения поверхности по изотермам адсорбции

Технология катализаторов -> Методы определения поверхности по изотермам адсорбции

Технология катализаторов -> Методы определения поверхности по изотермам адсорбции




ПОИСК





Смотрите так же термины и статьи:

Адсорбции изотерма

Адсорбция изотермы Изотермы адсорбции

Адсорбция определение

Адсорбция определение, методы

Изотермы

Изотермы и изотерма адсорбции

Изотермы изотермы

Метод определения поверхности

Определение поверхности



© 2025 chem21.info Реклама на сайте