Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бутилбромид

    Метилциклогексан при нагревании с бромистым или хлористым алюминием практически не изменяется [18]. При помощи метода меченых атомов с применением метилциклогексана, содержащего С1 -метильную группу, удалось показать, что изомеризация идет и что после реакции. 31% метилциклогексана содержал радиоактивный углерод в кольце [58]. Реакция проводилась при 25° в течение 21 часа, в качестве катализатора были взяты бромистый алюминий и бромистый водород, а в качестве инициатора цепи — вто/ -бутилбромид. В отсутствии инициатора в кольце оказалось только около 1% радиоактивного углерода. [c.46]


    Реакция н-бутилмагнийбромида с -бутилбромидом практически не идет даже при длительном кипячении в октане, трет-Бутилхлорид и реактив Гриньяра взаимодействуют с трудом, в присутствии солей ртути при многочасовом кипячении в ксилоле (выход 4—б%)  [c.266]

    Как уже было отмечено выше, Кистяковский и Штауфер [4] исследовали равновесие реакции между бромистым водородом, изобутиленом и третичным бутилбромидом. Экспериментальные данные этих авторов суммированы в табл. 7. [c.394]

    Равновесие между бромистым водородом, изобутиленом и третичным бутилбромидом, по данным Кистяковского и Штауфера [4] [c.394]

    Бутилбромид, взаимодействуя с син-бензальдоксимом, дает 58% эфира син-оксима и следы нитрона, в то время как анти-бензальдоксим в качестве главного продукта образует нитрон [1467]  [c.150]

    Скорости и механизмы реакций замещения Скорость реакции трет-бутилбромида с ОН  [c.382]

    По аналогичным нрнчннам нуклеофильная реакционная rio-собность аниона RS" больше, чем R0, в то время как RO значительно более сильное основание, чем RS". Так, в спиртовом растворе при 25 °С 4H9S реагирует с бутилбромидом и 1830 раз быстрее, чем R0. Второе утверждение основано на том, что тиолы обладают гораздо более кислыми свойствами, чем спирты. По этой причине выходы тиоэфиров в сопоставимых условиях выше, чем выходы простых эфиров, так как в последнем случае конкурентно протекают реакции элиминирования. [c.105]

    Так, например, гр г-бутилбромид и -иодид при взаимодействии с реактивами Гриньяра дают практически только изобутилен и КН. [c.269]

    Вычислено из скорости разложения треш-бутилбромида (см. табл. XI.4) и константы равновесия, измеренной Кистяковским и Стоффером [103]. lg(люль/л)=—18,000/4,575 Г-Ь6,16. Величины в скобках получены из констант скоростей Т и 3. Величина частотного фактора ие согласуется с частотным фактором для хлорида. [c.269]

    При реакции натрийамила с трет-бутилбромидом образуется 2,2-диметилгептан с выходом всего лишь 5,5% [94]. Взаимодействием порошкообразного натрия с эфирным раствором 2-бромпентана получается 4,5-ди-метилоктан с выходом только 16% [19]. Реакция между натрийбутилом и 2-бромоктаном дает ожидаемый парафин с выходом 35% [77]. При реакции между натрием и 3-хлор-2-метил-1 бутеном происходит аллильная перегруппировка и продукт содержит лишь 20% ожидаемого диена [1031  [c.403]

    Была изучена позиционная и субстратная селективность реакции алкилирования нафталина алкилгалогенидами (метил-, этил-, изопропил- и грет-бутилбромид) при контакте с А1С1з в растворах нитрометана и сероуглерода в условиях конкурирующих реакций с бензолом и нафталином. Установлено, что в сероводороде субстратная селективность, выраженная отношением н/ б, и позиционная селективность (отношение скоростей образования а- и р-алкилнафталинов) изменялись от условий реакции. Когда в качестве растворителя использовали нитрометан, отношение йн/ б и изомеров а-/р-алкилнафталинов при 25 °С оставалось постоянным в случае метилирования и этилирования [c.154]


    Способность ионов карбония отнимать ионы галоида от третичных галоидных алкилов подтверждается результатом реакции обмена между гр т-бутилбромидом и 1/)ет-амилхлоридом (по 0,5 моля каждого) при температуре от —25 до —30° С в присутствии достаточного количества хлористого алюминия (0,04 моля). В продуктах реакции были обнаружены 0,18 моля пгрепг-бутилхлорида и 0,25 моля трет-амилбромида [56].. [c.220]

    В то же время обмен галоидами наблюдался в незначительной степени или вообще не наблюдался при обработке пгрепг-бутилбромида [c.220]

    Следы некоторых галоидалкилов нромотируют изомеризацию метилциклопентана так же, как олефины [уравнение (38)]. Например, и- и изо-пропилбромиды и втор- и т эет-бутилбромиды эффективны нри 25°. Однако никакой изомеризации не наблюдалось, когда пытались исполь зовать в качестве инициатора бромистый метил или бромистый этил [54] при той же температуре. Это отсутствие реакционной способности бромистого метила и бромистого этила было объяснено как результат возможной трудности при отрыве первичным ионом карбония атома водорода от углеводорода. Эффективность к-нропилбромида не противоречит такой интерпретации, так как, по-видимому, катионы к-пропила легко переходят в катионы изонропила. [c.44]

    В полном соответствии с рассмотренным выше влиянием бензола на изомеризацию пентанов найдено, что он ингибитирует, а в больших концентрациях подавляет почти полностью изомеризацию метилциклопентана [51]. В одной серии опытов было показано, что количество образующегося циклогексана снижалось от 51 до 3% при увеличении концентрации бензола от 0,000 до 0,140 моля на 100 молей метилциклопентана. Такой же ингибитирующий эффект бензола проявлялся независимо от того, инициировалась ли изомеризация втор-бутилбромидом, светом и бромистым водородом или кислородом и светом в отсутствии бромистого водорода. Это свойство бензола объясняется той легкостью, с которой он реагирует с веществами, инициирующими цепь. [c.45]

    Был проведен ряд опытов при температурах от О до 50° с целью изучения кинетики изомеризации [54] в опытах продукты реакции анализировались через 2 и 18 час. Исходные вещества в каждом из опытов брались в следующих молярных отношениях метилциклопентана 100, бромистого алюминия 2,0, бромистого водорода 0,9, в/ио/)-бутилбромида 0,1. Можно было ожидать, что скорость изомеризации должна была бы возрастать с увеличением температуры в этой области. Это положение может быть справедливым для начальных скоростей, но в опытах было найдено, что скорость при более высокой температуре настолько быстро падает со временем, что спустя некоторое время степень изомеризации фактически оказывалась тем выше, чем ниже температура. Так, после 18 час. наблюдался разброс данных о степени изомеризации от 70% при 0° до 17% при 50°. Это объяснялось деструкцией веществ, инициирующих и (или) разветвляющих цепь под действием побочных реакций, которые протекают легче при повышенной температуре. Исследование кинетики изомеризации может привести к ошибочным заключейиям, если не принимать во внимание исчезновение веществ, инициирующих и развивающих цепь. [c.45]

    Можно сделать некоторые выводы относительно возможной скорости реакции карбоний-иона с ароматическими углеводородами. Барлет, Кондон и Шнейдер показали 15], что обменная реакция водород-галоид между изопентаном и т/)ет-бутилбромидом в присутствии бромистого алюминия при 25° заканчивается менее чем за 0,002 сек. [c.437]

    Кинетику этой реакции в гомогенных условиях (в диоксане) исследовали Угелстед и сотр. [249] оказалось, что ионная пара тетрабутиламмонийфенолята реагирует с бутилбромидом в 3-10 раз быстрее, чем простая калиевая соль. Комплекс калиевой соли с дициклогексано-18-крауном-6 реагирует быстрее простой соли в 2—3 раза [249] с достаточно хорошими выходами (большей частью 80—95%). Применение МФК особенно выгодно в тех случаях, когда кроме основной реакции может проходить С-алкилирование [29, 278]. В условиях МФК С-алкилирование идет всегда с выходом менее 5% [29, 380]. Были испытаны [29, 966] следующие алкилирующие агенты первичные и вторичные алкилгалогениды, эпихлоргидрин и диалкил- [c.153]

    В отличие от этого в молекуле трет-бутилбромида группы, присоединенные к атому углерода (три группы СН3), слишком велики, чтобы ОН и Вг могли одновременно связываться с ним. Образование активированного комплекса, соответствующего механизму 8 2, в этом случае невозможно. Реакция не будет происходить до тех пор, пока молекула трет-бу-тилбромида самопроизвольно не диссоциирует. Появившийся в результате диссоциации карбониевый ион подвергается атаке либо со стороны иона Вг , в результате чего снова образуются реагенты, либо со стороны иона ОН с образованием продукта. Если наличие ионов Вг определяется только предшествующей реакцией трет-бутилбромида, их концентрация, по-видимому, должна быть намного меньше, чем концентрация ОН , и большая часть карбониевых ионов будет превращаться в трет-бути-ловый спирт, (СНз)зСОН. [c.383]


    Взаимодействием 5,5,5-трнхлорпентантиола с бутилбромидом, этиленхлоргидрином, а-монохлоргидрином глицерина, моно- и три-хлорацетилом, хлоралем, формальдегидом и вторичными аминами по реакции Манниха получен ряд соответствующих соединений, содержащих серу, хлор и другие функциональные группы С = 0, [c.118]

    Строение и размер радикалов. В отличие от механизма 5N 2, в данном случае большой размер радикалов, связанных с центральным атомом углерода, оказывает благоприятное влияние на скорость реакции. Например, 3-бром-3-трет-бутил-2,2,4,4-тет-раметилпентан (17) реагирует быстрее, чем грег-бутилбромид. Наличие взаимного отталкивания углеводородных радикалов в более уплотненной, чем в плоском карбокатионе, тетраэдрической структуре молекулы исходного алкилгалогенида создает дополнительный стимул для образования карбокатиона, в котором алкильные группы максимально удалены друг от друга. [c.129]

    С наибольшим выходом магнийорганические соединения образуются из первичных алкилгалогенидов. Например, при проведении реакции с н-пропилбромидом образуется 92% ал-килмагнийбромида, а с изопропилбромидом выход снижается до 83%. Если же действовать магнием на трег-бутилбромид, то в качестве основного продукта образуется не магнийорганическое соединение, а смесь 2-метилпропена и 2-метилпро-пана  [c.255]


Смотреть страницы где упоминается термин Бутилбромид: [c.441]    [c.230]    [c.471]    [c.460]    [c.218]    [c.220]    [c.228]    [c.392]    [c.51]    [c.184]    [c.185]    [c.393]    [c.52]    [c.52]    [c.155]    [c.155]    [c.155]    [c.155]    [c.155]    [c.155]    [c.155]    [c.155]    [c.155]    [c.36]    [c.235]    [c.290]    [c.24]    [c.99]    [c.272]   
Методы синтеза с использованием литийорганических соединений (1991) -- [ c.30 ]

Методы органической химии Том 3 Выпуск 3 (1930) -- [ c.410 ]

Методы синтеза с использованием литийорганических соединений (1988) -- [ c.30 ]

Вредные химические вещества Углеводороды Галогенпроизводные углеводоров (1990) -- [ c.596 ]

Химия инсектисидов и фунгисидов (1948) -- [ c.178 ]




ПОИСК







© 2024 chem21.info Реклама на сайте