Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакторы непрерывного действия побочные реакции

    В качестве реакторов непрерывного действия используют также вертикальные колонные аппараты различных типов колпачковые [168, 169], насадочные [146, 170], а также со специальной конструкцией тарелок [70, 85, 165, 166]. Процесс этерификации осуществляется по принципу прямотока или противотока. При противотоке реагент с более низкой температурой кипения (обычно спирт) испаряется и вводится в нижнюю часть колонны. Его пары, поднимаясь вверх по колонне, реагируют с кислотой, моноэфиром или соединением фосфора, например РОСЬ, образуя соответствующий эфир. Газообразные побочные продукты реакции (вода, низший спирт, хлористый водород) выводятся вместе с парами спирта сверху колонны. Температура в реакторе поддерживается выше температуры кипения низкокипящего реагента. Для облегчения испарения спирта через колонну можно пропускать с небольшой скоростью инертный газ. [c.49]


    Гексаны, по-видимому, несколько чувствительнее к побочным реакциям, чем пентаны. Так, например, при определенных условиях, когда для управления процессом изомеризации пентанов было достаточно добавки только циклических ингибиторов, для гексанов необходимо добавлять, кроме циклических веществ, еще и водород [21]. Циклические ингибиторы вполне эффективно действуют в отсутствии водорода в системе, в которой поддерживается низкое отношение катализатора к водороду, и в реактор непрерывно вводится свежий катализатор [38]. [c.31]

    Для наглядности равенства (11.35) и (11.37), связывающие X и у при = 1, а также значение величины селективности V изображены в виде кривых на треугольной диаграмме (рис. 12). Из анализа кривых следует, что с увеличением степени превращения X скорость побочной реакции увеличивается, при этом селективность уменьшается в обоих типах реакторов, всегда оставаясь меньшей в реакторе полного перемешивания. Например, при степени превращения X = 0,6 селективность процесса в реакторе полного вытеснения составляет 0,61, а в реакторе полного смешения — только 0,4. Снижение селективности наблюдается и при переходе от реактора периодического действия к реактору непрерывного действия, что весьма существенно при моделировании и объясняется различным уровнем концентрации целевого продукта в начальный и конечный моменты времени пребывания в аппарате. [c.34]

    О потоке газа или жидкости, проходяш,ем через реактор. Проведение реакций в потоке целесообразно в тех случаях, когда время реакции относительно невелико, а производительность аппарата высока и реагенты представляют собой газообразные вещества. При высоких концентрациях, когда возможны побочные реакции, применение проточных реакторов облегчает регулирование состава получаемого продукта. Большинство непрерывных процессов протекает в стационарном состоянии. Нестационарное состояние возникает при пуске и остановке аппаратов (см. стр. 132). Непрерывные процессы обычно проводят в гораздо более крупных масштабах, чем периодические. Некоторые типы реакторов непрерывного действия показаны на рис. 1У-1 и 1У-2. Характер зависимости концентраций компонентов смеси от времени и изменение концентраций по длине или высоте реактора показаны на рис. 1У-3. [c.113]

    В трубчатых реакторах непрерывного действия при синтезе пленкообразующих материалов наиболее вероятен ламинарный режим. При этом возникает большая неравномерность времени пребывания отдельных частиц в реакционной смеси. Отсутствие перемешивания потока при ламинарном режиме и неравномерность времени пребывания могут при необходимости высокой степени превращения замедлить скорость реакции, повысить полидисперсность синтезируемого продукта и выход побочных продуктов реакции. [c.129]


    На выбор реактора может также оказать влияние и такой фактор, как нестабильность того или иного химического соединения в реакционной среде. Если какой-нибудь реагент легко превращается в нежелательные продукты в результате побочной реакции, реактор непрерывного действия с перемешиванием может оказаться предпочтительным вариантом, так как в этом случае можно выбрать такое время пребывания в реакторе, при котором в течение всего времени реакции концентрация исходного сырья в реакционном объеме будет очень низкой. Это, к примеру, может иметь место, если скорость побочной реакции зависит от более высокой концентрации реагента, чем та, которая требуется для реакции образования целевого продукта. Напротив, при нестабильности продукта более подходящим может оказаться трубчатый реактор, в котором высокая концентрация продукта наблюдается только в течение короткого периода перед выходом потока из трубки. [c.234]

    Наиболее распространенными в химической промышленности являются химические реакторы непрерывного действия с интенсивным перемешиванием реакционной массы и теплоотводом (рис. 6.5). Перемешивание используется для уменьшения влияния диффузионных сопротивлений на интегральную скорость превращения, создания однородных концентрационных и температурных условий по всему объему аппарата и интенсификации теплообмена реакционной массы с теплообменной поверхностью. Отвод теплоты при проведении экзотермических реакций обычно применяется для того, чтобы избежать перегрева реакционной массы и не допустить, таким образом, нежелательных побочных реакций, фазовых переходов, термического разложения продуктов, твердых отложений на внутренних поверхностях реактора и т. д. [c.110]

    Одиночные реакторы идеального смешения полунепрерывного действия. Устройство аппарата такое же, как и при периодическом процессе (рис. 1-2), но реагенты не загружаются полностью в начале процесса часть из них непрерывно подается в реактор по ходу процесса. Такие реакторы целесообразно применять в случае опасности чрезмерного повышения температуры или протекания побочных реакций при высоких концентрациях одного из компонентов. Например, в реакции А- - В —>- С в аппарат сначала загружается компонент А, компонент В подается непрерывно, причем число его молей Пв выбирается так, чтобы получать максимум целевого продукта (см. рис. 1-2). [c.16]

    Следует заметить, что мы рассматривали чрезвычайно простые реакции, проводимые в кубовом реакторе непрерывного действия. На практике приходится сталкиваться со значительно более сложными реакциями (подобными описанным Хофтайзером и Цвитерин-гом ), с процессами в трубчатых ректорах с теплообменом. Однако даже при использовании упрощенных уравнений скоростей качественный анализ влияния побочных реакций с тепловым эффектом [c.146]

    Константы скоростей зависят от температуры и концентрации НС1. Из уравнения видно, что желательно снижать величину в реакционной фазе, чтобы подавить побочные реакции образования X т Y. Этого можно достигнуть экстракцией фурфурола из реакционной смеси. Шоенеман и Гофман детально исследовали эту реакцию и рассчитали на основании экспериментальных данных но скорости и коэффициенту распределения Кр выход фурфурола для различных типов реакторов и условий процесса (таких, как концентрация ксилозы в сырье, концентрация НС1, температура реакции). Они подтвердили экспериментально, что выход т р = 0,63 можно получить в каскаде из трех кубовых реакторов непрерывного действия с применением тетралина в качестве растворителя g и при величине = Ю. В случае периодического процесса при тех [c.160]

    Здесь мы в большей степени касаемся применения фотохимии в промышленном синтезе. Очевидно, что фотохимический процесс должен превосходить по выходу или чистоте продукта обычные методы производства, чтобы конкурировать с ними. Особенно подходящими кандидатами для промышленного применения являются цепные реакции (часто с радикальными переносчиками цепи) с фотохимической начальной стадией. Мы уже рассматривали такое их использование в связи с фотополимеризацией (разд. 8.8.2). Заметим, что фотохимическая реакция может быть экономически оправданной даже в том случае, когда ее квантовый выход низок, если выход химического продукта выше, чем у обычных процессов. В производстве веществ тонкой химической технологии расходы на свет составлявот незначительную часть общей стоимости продукта высокого качества. Более того, вследствие относительно малых количеств используемого материала серийный процесс часто может представлять увеличенную копию лабораторного метода. При использовании фотохимии в широкомасштабном валовом химическом производстве возникают несколько большие трудности, так как плата за энергию может теперь составлять существенную часть стоимости конечного продукта. В широкомасштабном производстве часто применяются реакторы непрерывного действия, ставящие перед фотохимией проблемы, связанные с их конструкцией. В частности, необходимо использовать прозрачные реакторы или прозрачные кожухи ламп, стенки которых часто загрязняются образующимися смолообразными (и светопоглощающими) побочными продуктами. Размер реактора также может серьезно ограничиваться поглощением света реагентами. Этим недостаткам фотохимического синтеза должна быть противопоставлена более высокая селективность получения продуктов и лучший контроль за их образованием. Процесс производства отличается меньшими тепловыми нагрузками, поскольку реагенты не нужно нагревать, а затем охлаждать. Выли разработаны и технологии преодоления проблем, связанных с фотохимическими реакторами. Они включают освещение поверхности падающих тонких слоев реагентов использование ламинарных потоков несмешивающихся жидкостей, причем ближайшей к стенке реактора должна быть жидкость, поглощающая свет применение пузырьков газа, вызывающих турбулентность, для улучшения обмена реагента. И на- [c.283]


    Синтез ХЭС осуществляют в реакторе непрерывного действия — противоточной колонне с насадкой. Для подавления побочной реакции образования этандисульфоната (ЭДС) используют разбавленный раствор ХагЗОз и избыток ДХЭ. При степени превращения сульфита 95—97% выход ХЭС составляет 77—79% от теоретического. После отпарки непрореагировавшего ДХЭ раствор ХЭС подвергается сушке в аппарате кипящего слоя. Технический ХЭС содержит 57—60% основного вещества, 27—30% ХаС1 и 11—13% ЭДС. [c.73]

    Реакторы периодического действия часто используют, еслп скорость производства мала или время реакции велико. Они могут быть прпспособлены для широкого диапазона условий реакции, поэтому их используют в тех случаях, когда на одной установке производят различные химические продукты (например, в фармацевтической промышленности). Периодическое производство обладает некоторыми преимуществами по сравнению с непрерывным, если с заметной скоростью протекают побочные процессы или существует опасность загрязнения сырья (например, прп биологической ферментации). Капитальные вложения на создание периодического реактора (включая вспомогательное оборудование) обычно относительно низки. [c.72]

    Основные типы реакций алкилирования, проводимых на цеолитах и в присутствии катализаторов Фриделя — Крафтса, не отличаются друг от друга. В качестве алкилирующих агентов изучена большая группа олефинов —от Сг до С,о [61—64]. Алкилирование этиленом происходит только при температурах выше 150° С, тогда как пропилен и бутилен способны алкилировать уже в жидкой фазе при комнатной температуре. Алкилирующим агентом не обязательно должен быть олефин, для этой цели вполне пригодньс галогеналкилы и спирты, например метанол [61]. Хлористый водород, выделяющийся в процессе алкилирования галогеналкилами, не затрагивает каркаса цеолита, если реакция проводится в безводной среде. В случае алкилирования спиртами побочным продуктом является вода, которая также не оказывает дезактивирующего действия, если температура в реакторе достаточно высока для непрерывной десорбции воды. [c.391]


Смотреть страницы где упоминается термин Реакторы непрерывного действия побочные реакции: [c.37]    [c.36]    [c.11]    [c.24]   
Перемешивание в химической промышленности (1963) -- [ c.244 ]




ПОИСК





Смотрите так же термины и статьи:

Побочные

Реактор действия

Реактор непрерывного действия

Реакции побочные



© 2025 chem21.info Реклама на сайте