Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Деструкция поверхностно-активных веществ

    Поверхностно-активные вещества (ПАВ) представляют собой разнородную по химической структуре группу соединений, которые обладают одинаковой способностью снижать поверхностное натяжение жидкостей. Несмотря на стремление рассматривать микробную деструкцию синтетических веществ в связи с их химическим строением, в данном случае нам представляется более удобным использовать чисто утилитарную классификацию для того, чтобы привлечь внимание лиц, интересующихся проблемой биоразложения ПАВ, опасных загрязнителей воды. Внутри этой группы мы анализируем имеющиеся в литературе и полученные нами данные с точки зрения выяснения корреляции между микробными таксонами и химической структурой разрушаемых веществ. [c.152]


    Во время замачивания моющий раствор поверхностно активных веществ подвергает деструкции частицы загрязнений, что ведет к их отслаиванию от поверхности стекла и удалению. [c.358]

    ДЕСТРУКЦИЯ ПОВЕРХНОСТНО-АКТИВНЫХ ВЕЩЕСТВ [c.152]

    Коллоидные поверхностно-активные вещества. Коллоидными поверхностно-активными веществами называют соединения, способные не только концентрироваться на границе раздела фаз, что вообще характерно для всех поверхностно-активных соединений, но и образовывать мицелляр-ные системы. Эти вещества в настоящее время очень широко применяются в различных отраслях промышленности по темпам роста производства они занимают одно из первых мест среди продукции химического производства. В настоящее время коллоидные поверхностно-активные вещества применяются для стирки и обработки тканей как средства, облегчающие диспергирование твердых веществ, как эмульгаторы в производстве фармацевтических и косметических препаратов, как пенообразователи в противопожарной технике и во многих других случаях. Они нашли применение в биологических исследованиях, например для деструкции биологических мембран (дезоксихолат натрия, тритон Х-100 и др.), эмульгирования нерастворимых жидкостей. [c.164]

    В начальный момент в реакторе образуются две фазы паровая и жидкая, разделенные прочным поверхностным слоем, который обладает специфическими свойствами. Эти свойства определяются структурой и концентрацией поверхностно-активных веществ и температурой системы. Регулируя указанные параметры, удается изменять структурно-механическую прочность поверхностного слО Я и влиять на технологию процесса коксования. Обычно газы и пары (продукты деструкции), прорывающиеся через этот слой, вызывают пенообразование. Если в жидкой части загрузки реактора образуется пена достаточно прочная, то ири бурном испарении или выделении газов в случае резкого изменения рабочих условий коксования (например, давления) может произойти выброс большого количества жидкой части загрузки из реактора в колонну. [c.182]

    Карбонизация характерна для облагораживания специальных пеков после их формования и отверждения и для нефтяных коксов. При температурах карбонизации наблюдаются интенсивные процессы деструкции, приводящие к увеличению внутренней поверхности вещества, что обусловливает увеличение химической активности кристаллитов кокса при температурах ниже 700°С часть первичных соединений, находящихся в исходном коксе, интенсивно превращается во вторичные, образуя поверхностные комплексы (см, гл. I), В диапазоне температур 500—1000 °С наблюдается максимум энергетической ненасыщенности кристаллитов кокса, которая способствует повышению в кристаллитах молекулярных напряжений, приводящих к сокращению внешней поверхности, а также к перегруппировке и сближению кристаллитов. Баланс сил, вызывающих увеличение внутренней поверхности и ее снижение в результате межкристаллитных напряжений, обусловливает максимум объемной усадки и внешней поверхности в интервале температур на этапе карбонизации. Физико-химические свойства углерода на этом этапе особенно сильно зависят от скорости его нагрева. В свою очередь, структурные преобразования уменьшают энергетическую ненасыщенность кристаллитов и удельную поверхность углерода, К концу процесса карбонизации энергетическая ненасыщенность и удельная поверхность углерода резко снижаются. [c.192]


    Необходимость интенсификации биологической очистки общепризнана. К мысли о целесообразности замены активного ила частично или полностью селекционированными чистыми культурами высокоактивных бактерий-деструкторов, т. е. к переходу на микробиологическую очистку, мы пришли в результате экспериментальной работы по разрушению чистыми культурами следующих синтетических органических соединений па/7а-нитроанилина, 2,4,6-тринитрофенола (пикриновой кислоты), капролактама, гексаметилендиамина (ГМД), анионных поверхностно-активных веществ — додецилсульфата натрия. Все перечисленные соединения активным илом либо не разрушаются, либо разрушаются лишь в малых концентрациях, тогда как чистые культуры бактерий или их комплексы вызывают деструкцию этих веществ при значительно более высоких концентрациях в среде. [c.231]

    Удаление химическим путем примесей, катализирующих деструкцию полимера. Остающиеся в полимере катализаторы полимеризации часто ускоряют процесс деструкции, особенно в случае полиолефинов низкого давления. Обычно по окончании полимеризации катализаторы Циглера — Натта переводят в неактивную форму, добавляя вещества с реакционноспособным атомом водорода (например, спирты) и затем вымывая водой (с добавкой поверхностно-активных веществ) [738, 1093, 1778, 2644]. Улучшение стабильности достигается дополнительной обработкой полимера серной кислотой, содержащей 10— 30% воды и смачивающее средство (спирты, эфиры, сорбит и жирные кислоты), промыванием водой или смесью воды с растворителями [697, 1844, 2201, 2662, 2982]. [c.352]

    Поливинилхлоридная смола, выпускаемая некоторыми заграничными фирмами, получается оплавленной уже в процессе производства и ее можно непосредственно отправлять на спекание мипласта. При нагревании поливинилхлоридной смолы происходит ее частичная деструкция с образованием НС1. Поскольку смолы, предназначенные для производства мипласта, содержат в своем составе стабилизаторы щелочного характера, то некоторое количество НС1 связывается в соль, способную в дальнейшем переходить в водные растворы. Для удаления этих небольших количеств ионов хлора мипласт после спекания промывается проточной водой (см. рис. 16). Поливинилхлоридная смола гидрофобна, она смачивается водными растворами только после обработки поверхностно-активными веществами. [c.76]

    Окислением жидких или твердых углеводородов нефтепереработки (фракции Сю — С30) получают высшие жирные кислоты и спирты, используемые в производстве мыла и других поверхностно-активных веществ. При окислении происходит деструкция углеродной цепи с образованием монокарбоновых кислот с более короткой цепью в основном нормального строения  [c.283]

    Растворы щелочей по своему влиянию на химическое сопротивление стеклопластиков представляют наиболее сложную в физико-химическом отношении систему. Эти среды имеют химическое сродство к компонентам стеклопластиков, являются катализаторами гидролитической деструкции связующих и проявляют свойства поверхностно-активных веществ. В связи с этим к пластифицирующему действию воды в щелочных средах добавляются процессы каталитического гидролиза и явления адсорбционного понижения прочности в поле механических сил. Сочетание различных эффектов дает сложную картину концентрационной зависимости прочности. [c.140]

    В облученном полиэтилене заметно увеличивается сопротивление растрескиванию под влиянием длительно действующих нагрузок, поверхностно-активных веществ или остаточных напряжений. Чем ниже степень кристалличности полиэтилена и больше доза облучения, тем выше становится скорость деструкции его по сравнению со скоростью поперечного соединения макромолекул. [c.258]

    В связи с особой актуальностью охраны окружающей среды от загрязнения химическими реагентами большое внимание уделяется изучению способности ПАВ к биологическому разрушению в водной, почвенной и других средах. Биологическим разложением называют любое изменение (трансформацию) молекулы химического соединения, ведущее к упрощению структуры и изменению его различных свойств (физико-химических, токсикологических и др.) под влиянием живых организмов. Различают первичное и полное биологическое разложение. Так, гидрологическое отщепление от молекулы ПАВ активной сульфогруппы приводит к утрате веществом поверхностной активности, а с ней и способности к пенообразованию. В данном случае приемлемое для окружающей среды биоразложение совпадает с первичным разложением. Полное биоразложение — это распад вещества до простых неорганических соединений с образованием воды, углекислого газа, азота, аммиака и др. Известно, что алкилсульфаты разрушаются в результате гидролиза с образованием соответствующих спиртов которые окисляются до жирных кислот. В свою очередь последние подвергаются деструкции путем а- и р-окисле-ния. Вторичные жирные спирты (ВЖС) могут разлагаться по такому механизму ВЖС- спирт->кетон->оксикетон- дион альдегид-V кислота. Деструкция анионных ПАВ,, ведущая к потере поверхностной активности, может происходить либо путем отщепления от молекулы вещества гидрофильной группы, либо в результате последовательного окисления алкильного радикала. Отщепление гидрофильной, группы у синтетических алкилсульфатов, алкилсульфена-тов и алкиларилсульфенатов осуществляется в результате каталитического воздействия ферментов сульфатаз. [c.93]


    В частности, в США подобный продукт — экстракт ГМЦ, являющийся побочным продуктом при производстве тарного картона, — использовали при гранулировании комбикормов [78]. Этот продукт растворим в воде и содержит водорастворимые ГМЦ, экстрактивные вещества древесины и продукт частичной деструкции полимеров. Для снижения вязкости жидкого экстракта ГМЦ используют ферменты или поверхностно-активные веще ства. [c.249]

    Возможность рационального использования целлюлозы для получения изделий из нее с требуемыми свойствами непосредственно зависит от выяснения основных вопросов формирования структуры целлюлозных материалов и от подробного изучения влияния различных факторов на их свойства. Большое значение имеют поверхностные свойства целлюлозы. В результате многих исследований установлено, что волокнистые целлюлозные материалы обладают ясно выраженной обменно-адсорбционной активностью по отношению к катионам, т. е. они являются катионитами. Чем меньше содержится в целлюлозном материале сопутствующих веществ и продуктов деструкции, тем меньше его обменно-адсорбционная способность. Однако и наиболее очищенные образцы целлюлозы обладают заметной ионообменной способностью. Обмениваются на очищенной целлюлозе ионы водорода карбоксильных групп, которые отчасти имеются уже в необработанной целлюлозе и вновь образуются при ее химической обработке. Благодаря наличию карбоксильных групп целлюлоза имеет отчетливые кислые свойства. [c.461]

    Авторами сделаны попытки обобщить литературные данные и результаты собственных исследований относительно микроорганизмов, активно участвующих во внешней среде или в лабораторной практике в деструкции пестицидов, поверхностно-ак-тивных веществ (ПАВ) и отбросов различных отраслей промышленности, загрязняющих природу трудно разлагаемыми органическими веществами. [c.7]

    Органические диоксимы, особенно п-хинондиоксим,— еще один тип соединений, которые можно применять для отверждения большинства жидких полисульфидов. Эти вещества не очень активны, и поэтому для проведения процесса требуется нагревание существенное влияние на скорость отверждения оказывают добавки органических оснований типа дифенилгуанидина. Часто также добавляют серу для завершения отверждения и снижения остаточных деформаций при сжатии. Оксимы в процессе отверждения полисульфидов восстанавливаются в ароматические амины, и поверхностное окрашивание полученного продукта и граничащего с ним материала является весьма существенным недостатком этого метода отверждения. Кроме того, амины при повышенной температуре могут вызывать деструкцию отвержденных полисульфидов [c.326]

    Некоторые из этих дефектов или все они вместе могут увеличивать каталитическую активность. Однако часто значительного увеличения активности [151] не происходит, даже если при облучении образуются такие дефекты. Причина этого может заключаться просто в том, что имеется тенденция отжига дефектов кристаллической решетки при температурах, нри которых проводят изучение катализа. Уменьшение активности после облучения почти всегда и неизменно связано с деструкцией активных центров под действием радиации. Так, Шваб и др. [148, 149] нашли, что каталитическая активность как меди, так и никеля нри гидрировании этилена при предварительном облучении этих веществ сс-, р- или у-радиацией фактически сводилась к нулю. Так как каталитическую активность удавалось восстановить обработкой водородом, был сделан вывод, что роль активных центров в этой каталитической реакции играют поверхностные атомы металла, на которых адсорбирован водород. Шваб и Конрад [150], изучая влияние [c.255]

    Рассматривается новый способ повышения нефтеотдачи слабопроницаемых карбонатных коллекторов с применением поверхностно-активных веществ (НПАВ с АПАВ). Установлено, что наибольшее разрушающее действие на не-онол АФ9Л2 оказывают минеральные кислоты. В реальных пластовых условиях на поверхности породы находятся координационно-ненасыщенные ионы Fe ", АГ, Mg ", Са и вода, связанная с этими ионами, приобретает кислые свойства. Степень химической деструкции под действием компонентов породы составляет 27-30%. [c.181]

    Целевое назначение ПАВ как моющих средств обусловливает попадание почти всего объема их продукции в сточную воду, которая, в свою очередь, может загрязнять поверхностные водоемы, грунтовые воды, почву. Химические и физико-химические методы очистки стоков не решают проблемы борьбы с загрязнением воды поверхностно-активными веществами, так как при использовании этих методов ПАВ, как правило, только концентрируются или разрушаются частично, но не разлагаются полностью до СО2, Н2О и других простейших продуктов. Полная деструкция детергентов осуществляется микроорганизмами, на использовании которых основаны все биологические методы очистки воды. Однако очистка стоков от ПАВ общепринятыми биологическими методами затруднена, поскольку многие из этих веществ сравнительно устойчивы к микробному разложению и проходят через очистные сооружения, не изменяясь. При этом ПАВ из-за высокой способности к ценообразованию нарушают их работу, снижая скорость оседания активного ила. Разнесение пены ветром создает эпидемиологическую опасность, так как вместе с пеной распространяются болезнетворные бактерии, в частности возбудители кишечных инфекций. Число бактерий в водоемах при ценообразовании очень возрастает из-за того, что в пене создаются чрезвычайно благоприятные трофические условия [200]. Незначительное количество (0,2—0,4 мг/л ПАВ) придает неприятный вкус и запах питьевой воде. Образование пены на поверхности водоемов нарушает кислородный режим и вызывает массовую гибель населяющей их флоры и фауны. Изучению санитарно-гигиенических аспектов загрязнения воды ПАВ посвящена монография Е. А. Можаева [185], в которой приведены данные о их влиянии на качество воды, самоочи-щающую способность водоемов, организм человека и животных. [c.153]

    Анализ литературы и результатов исследований других авторов показывает, что метод заводнения с ПАВ очень чувствителен к геолаго-физическим условиям пласта и химическому составу пластовой среды, в которой используется определенный тип ПАВ или мицеллярная система на их основе. Результаты опытнопромысловых экспериментов показали, что предполагаемая эффективность практически не достигается. Низкая эффективность поверхностно-активных веществ объясняется процессами адсорбции на породе, переходом на нефтяную фазу и биологической деструкцией [28, 29]. [c.18]

    В предлагаемой квалифицированному читателю книге рассматривается широкий спектр проблем, связанных с заводнением с поверхностно-активными веществами (ПАВ). Этот метод и технологии его реализации имеют уже более чем 30-летнюю историю. Автор дает объективную оценку технологии непрерывного закачивания низкоконцентрированных растворов ПАВ (НПАВ) типа ОП-10 и всем испытанным технологиям закачки монорастворов НПАВ. Эти технологии малоэффективны и нерентабельны, что связано с процессами адсорбции и деструкции индивидуальных ПАВ. Показано, что дальнейшие исследования и промысловые работы, направленные на создание новейших и высокоэффективных технологий [c.5]

    Количество введенного связующего также оказьюает влияние на пористость получаемого материала. Увеличение содержания связующего против оптимального приводит к изменению распределения пор по размерам. В работе [1], отмечено, что при одном и том же гранулометрическом составе увеличение связующего дает распределение пористости с одним максимумом вместо двух. Уменьшение содержания связующего при прочих равных условиях снижает проницаемость. Добавление в пек поверхностно-активных веществ, например, 0,5-3 % олеиновой кислоты, приводит к изменению (уменьшению) размера и объема крупных пор. Коксы, получающиеся из пека с такими добавками, имеют мелкопористую однородную структуру. Взаимодействие полярных групп поверхностно-активных веществ с функциональными группами пека изменяет процесс деструкции пека, что находит отражение и в пористой структуре [1]. > [c.36]

    Щелочная целлюлоза как технический продукт содержит 30— 32% целлюлозы, 15—16% NaOH и 52—53% воды. Помимо трех различных по своим свойствам гидроксильных групп, содержащихся в элементарном звене целлюлозы, в реакции с сероуглеродом могут участвовать или определенным образом влиять на основную реакцию многочисленные функциональные группы на концах цепей в низкомолекулярных фракциях и спутниках целлюлозы. Нельзя не учитывать также, что технические растворы NaOH не являются химически чистыми продуктами. Кроме того, в последние годы для улучшения некоторых стадий технологического процесса в целлюлозу и щелочь вводят различные поверхностно-активные вещества, катализаторы деструкции, модификаторы, которые также осложняют химизм процесса. Тем не менее, при анализе всего комплекса протекающих химических взаимодействий можно выделить две главных реакции — взаимбдействие S2 с гидроксильными группами целлюлозы и едким натром. [c.79]

    Метод диспергирования заключается в переводе резины в дисперсное состояние при относительно низкой температуре, составляющей 60 °С. В основу метода положено диспергирование резины в присутствии поверхностно активных веществ в водной среде. Этот метод позволяет лучше сохранять свойства каучука, что повышает механические показатели вулканизатов. Регенерат, изготовленный таким методом, хорошо распределяется в резиновых смесях. Поэтому можно предположить, что при диспергировании резины в водной среде происходит механическая деструкция девул канизатов преимущественно по связям серы. [c.152]

    Процесс измельчения и размалывания в жидких средах определяется природой последних и взаимодействием между жидкостью и полимером. На первых стадиях процесса жидкость проникает в дефектные пространства структуры полимера, в щели, в прол1ежутки между волокнами и т. п., развивая расклинивающие усилия, которые приводят к деструкции обрабатываемого полимера. Большую роль в этом случае играет наличие поверхностно-активных веществ, которые облегчают смачивание внешней поверхности и способствуют развитию давлений и появлению в конечном итоге новых поверхностей. Так, например, было установлено, что при размалывании целлюлозы в присутствии синтетических поверхностно-активных веществ протекают химические превращения в направлении образования у-фракций. Аналогично ведут себя и белковые материалы типа кожевенных отходов. [c.113]

    Помимо остаточных мономеров и воды в полимере накапливаются также низкомолекулярные неполимеризующиеся примеси, попадающие из сырья, а также остатки инициаторов, катализаторов, поверхностно-активных веществ, следы растворителей, продуктов деструкции полимера. Примеси могут попадать в полимер из аппаратуры, привноситься с добавками. Для их контроля используют различные методы, выбор которых определяется природой примеси и чувствительностью анализа. Необходимость такого контроля возникает для полимеров [c.274]

    В последнее время все большее применение для получения водных дисперсий полимеров находит метод вальцевания полимеров в присутствии поверхностно-активных веществ2 2. В отличие от механического измельчения полимера путем сухого помола вальцевание полимера в присутствии поверхностно-активных веществ не сопровождается его деструкцией . Этим методом получают достаточно концентрированные водные дисперсии полиэтилена , полипропилена полиамидов и полиэфировЗ. з2,з4,35 полиизобутилена и ряда других полимеров. [c.9]

    Полиэтилен отличает высокая химическая стойкость к действию самых различных реагентов кислот, щелочей, солей, органических растворителей, нефтепродуктов. Химическую деструкцию вызывают сильные окислители (азотная кислота, концентрированная серная кислота). Под действием поверхностно-активных веществ наблюдается растрескивание полиэтилена, опасность которого возрастает при наличии растягивающих напряжений. В процессе переработки полиэтилена, включая термические методы нанесения покрытий из порошка, он подвергается термоокислительной деструкции, а также термоструктурированию. Поэтому полиэтилен и сополимер этилена с пропиленом термостабилизируют диафеном НН, бисалкофеном БП, тиолкофеном БМ в концентрации 0,15— [c.82]

    Поверхностные эффекты в процессах диспергирования не исчерпываются понижением поверхностной энергии и прочности в результате чисто физической а дсорбции молекул. Так, при использовании СОЖ важную роль играют различные хемосорбционные и механохимические явления, связанные с деструкцией молекул органических веществ при совместном действии механических напряжений, высоких температур в зоне резания и взаимодействия молекул со свежеобразованной (ювенильной) поверхностью твердого тела, имеющей повышенную химическую активность. [c.409]

    ПЛАСТИКАЦИЯ ПОЛИМЕРОВ, происходит при нагрев, и (или) интенсивной мех. обработке материала. В результате пластикации (П.) облегчается переработка полимера в изделие. Прн П. каучуков уменьшается высокоэластическая и увеличивается пластич. составляющая их деформа-иии, гл. обр. вследствие деструкции макромолекул. П. пластмасс — размягчение (плавление) материала в условиях, исключающих возможность заметной деструкции. П. осуществляется в спец. обогреваемых узлах перерабатывающего оборудования (напр., при литье под давл.) или одновременно с др. технол. операциями (напр., при смешении полимера с ингредиентами, экструзии). Для П. каучуков используют также спец. машины (пластикаторы). ПЛАСТИКИ, то же, что пластические массы. ПЛАСТИФИКАТОРЫ, 1) вещества, к-рые вводят в состав полимерных материалов для придания (или повышения) эластичности и (или) пластичности при переработке и эксплуатации. Облегчают диспергирование ингредиентов, снижают т-ру технол. обработки композиций, улучшают морозостойкость полимеров, но иногда ухудшают их теплостойкость. Нек-рые П. могут повышать огне,- свего- и термостойкость полимеров. Общие требования к П. хорошая совместимость с полимером, низкая летучесть, отсутствие запаха, хим. инертность, стойкость к экстракции из полимера жидкими средами, вапр. маслами, моющими ср-ваМи. Наиб, распространенные П.— сложные эфиры, вапр. диоктилфталат, дибутилсебацинат, три(2-этилгексил фосфат. Использ. также минер, и невысыхающие растит, масла, эпоксидированное соевое масло, хлориров. парафины и др. Кол-во П. в композиции — от 1—2 до 100% (от массы полимера). Осн. потребитель П.— пром-сть пластмасс (ок. 70% общего объема произ-ва П. расходуется на изготовление пластиката). См. также Мягчители. 2) Поверхностно-активные добавки, к-рые вводят в строит, р-ры и бетонные смеси (0,15— 0,3% от массы вяжущего) для облегчения укладки в форму и снижения содержания воды. Широко используемый П. этого типа — сульфитно-спиртовая барда. [c.446]

    В отличие от органических загрязняющих веществ, как указывает П.Н. Линник [1989], подверженных в той или иной степени деструкции, ТМ не способны к подобным превращениям. Они могут лишь перераспределяться между отдельными компонентами водных экосистем — водой, донными отложениями и биотой. Поэтому их необходимо рассматривать как постоянно присутствующие в экосистемах вещества. Совсем недавно исследования ТМ в поверхностных водоемах сводились только к определению валового их содержания. Однако такая оценка малообоснована, так как биологическая активность и химическая реакционная способность в природных водах определяется в значительной степени их состоянием — всей совокупностью сосуществующих физических и химических их форм (ионным потенциалом химических элементов, величиной pH и ЕЬ, адсорбционными свойствами донных отложений и пр.). Наибольшей токсичностью обладают разнообразные металлоорганические соединения, способные проникать через клеточную мембрану [c.148]


Библиография для Деструкция поверхностно-активных веществ: [c.244]   
Смотреть страницы где упоминается термин Деструкция поверхностно-активных веществ: [c.732]    [c.253]    [c.181]    [c.173]    [c.362]    [c.211]    [c.97]    [c.125]    [c.361]    [c.111]    [c.446]    [c.120]   
Смотреть главы в:

Микробиология очистки воды -> Деструкция поверхностно-активных веществ




ПОИСК





Смотрите так же термины и статьи:

Поверхностная активность

Поверхностно-активные вещества



© 2025 chem21.info Реклама на сайте