Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сдвигающие реагенты хиральные

    Сольволиз проводился в водном диоксане (4 1) при 80 °С в присутствии 2,6-лутидина. Главный продукт процесса XV, получающийся за счет 1,2-фенильного сдвига, был выделен с помощью газожидкостной хроматографии, характеризовался [а] = —51,3° и был оптически чистым ( 3%), что было определено с помощью хиральных сдвиг-реагентов. [c.206]

    Значительно более универсален метод ЯМР, базирующийся на использовании лантаноидных сдвигающих реагентов он сочетает высокое разрешение, обусловленное псевдоконтактным сдвигом сигналов в слабое поле [9], с их расщеплением вследствие энантиоселективного взаимодействия с хиральным лантаноидным комплексом [10]. Принцип этого метода отражен на рис. 3.3. Обычно 3-дикетоны (в форме енолов) образуют прочные комплексы с ионами металлов ряда лантаноидов, например с Еи + или Рг +. Эти парамагнитные комплексы могут объединяться или каким-то образом взаимодействовать с соединениями, имеющими электронодонорные группы, такими как амины, аминокислоты, спирты, кетоны и эфиры, вызывая значительный сдвиг сигналов в слабое поле для ядер, не слишком удаленных от центров взаимодействия. И поскольку хиральные 3-дикетоны вполне доступны, то доступны и хиральные сдвигающие реагенты. На рис.3.3 показан в качестве примера ком- [c.34]


    ЯМР-спектроскопические методы. В последнее время существенно разработан метод определения отношения энантиомеров с помощью ЯМР-спектроскопии, что позволило по мере накопления данных определить конфигурацию и отношение энантиомеров для большего числа соединений. Теперь ЯМР-спектроско-пия — один из наиболее удобных методов определения конфигурации и отношения энантиомеров. Так как из ЯМР-спектра хиральность непосредственно не определяется, то отношение энантиомеров Зо и определяется после превращения образца в диастереомерные состояния, 5п—Ко и т.д. при действии оптически активного реагента или растворителя Н. Так как соединения в диастереомерном состоянии обладают неодинаковыми свободными энергиями образования, то они имеют и разные физические свойства. Тогда ядерные сдвиги будут различны и эти различия проявляются в ЯМР-спектре. [c.278]

    Рассматривая более широко исследования оптически активных веществ, следует указать на хроматографический метод и метод ЯМР, которые здесь не излагаются. В первом методе используют хиральные неподвижные фазы в качестве адсорбента. Во втором методе создают условия для различий в химических сдвигах и интенсивностях отдельных сигналов энантиотропных групп за счет их взаимодействий с хиралЬным растворителем или хиральным сдвигающим реагентом (см. глЛ1). [c.168]

    Известен родственный метод, не требующий превращения энантиомеров в диастереомеры. Он основан на том факте, что ЯМР-спектры энантиомеров в хиральных растворителях в принципе должны отличаться. В некоторых случаях сигналы достаточно разделены, и по их интенсивности можно установить относительное содержание каждого из энантиомеров [101]. Другой разновидностью метода, дающей зачастую лучшие результаты, является использование ахирального растворителя с добавлением хирального лантаноидного сдвигающего реагента, например трис(З-трифтороацетил-сг-камфорато) европия (III) [102]. Сдвигающие реагенты группы лантаноидов обладают свойством уширять ЯМР-сигналы молекул, с которыми они могут образовывать координационные соединения, например спиртов, карбонильных соединений, аминов и др. при этом сигналы двух энантиомеров сдвигаются неодинаково. [c.162]

Рис. 3.3. Структура хирального сдвигающего реагента [трис(3-трифторметилокси-метилен)-(+)-камфорато]-европия(1П) (Еи[( + )-Гасат]з), вызывающего расщепление сигнала и его сдвиг в слабое поле в спектрах ЯМР соединений, способных взаимодействовать с атомом металла. Рис. 3.3. <a href="/info/173673">Структура хирального</a> сдвигающего реагента [трис(3-трифторметилокси-метилен)-(+)-камфорато]-европия(1П) (Еи[( + )-Гасат]з), вызывающего <a href="/info/1121062">расщепление сигнала</a> и его сдвиг в <a href="/info/92491">слабое поле</a> в спектрах ЯМР соединений, <a href="/info/1283907">способных взаимодействовать</a> с атомом металла.

    Ясное понимание топических взаимоотношений между лигандами в молекуле весьма полезно при интерпретации спектров ЯМР. Гомотопные ядра всегда имеют один и тот же химический сдвиг) соответствующие сигналы называют изохронными. Однако диастереотопные ядра могут различаться по величине химического сдвига в подобном случае наблюдаемые сигналы называют анизохрон-ными. В ахиральных растворителях энантиотопные ядра дают изохронные сигналы, но в присутствии хиральных растворителей [66] или комплексообразователей [67], включая и ферменты, которые можно рассматривать как хиральные реагенты, удается обнаружить разницу между энантиотопными лигандами. Таким образом, энантиотопные ядра в хиральном окружении могут проявлять ани-зохронность. [c.48]

    Спектроскопия ЯМР вносит значительный вклад в определение энантиомерного состава и конфигурации. Специфические различия в спектрах компонентов диастереомерных пар сложных эфиров различных кислот были отмечены несколькими группами исследователей. Наиболее полно изучены стереохимические соотношения для эфиров (25) 2-трифторметил-2-метоксифенилуксус-ной кислоты (реагент Мошера) [22]. Привлекательность этих сложных эфиров (25) объясняется доступностью конфигурационных моделей, учитывающих относительные химические сдвиги и Н (как в метокси-, так и алкильной группе), связанных с двумя хиральными центрами. Еще более удобной является интерпретация различий в спектрах энантиомеров в асимметрическом окружении, которое обеспечивается использованием хираль-ного растворителя или хирального сдвигающего реагента. При изучении сольватации диастереомеров Пиркл установил, что в случае алкиларилметанолов в (+)-1-(1-нафтил)этиламине резонанс а-водорода для энантиомера с конфигурацией (24) находится в более слабом поле. Позднее основное внимание было привлечено к использованию хиральных сдвигающих реагентов, дающих прекрасное различение. Такие реагенты, как например, производные камфоры (26), исключительно эффективны для определения энантиомерного состава частично разделенных спиртов, однако корреляции между спектральными и конфигурационными характеристиками справедливы, по-видимому, только для родственных соединений [23]. [c.24]

    Сдвиги, индуцируемые реагентом 13, распространяются на 6 - 7 атомов углерода от координационного центра. Построив зависимость 6 от концентрации, можно получить предельные сдвиги и константы образования и определить стехиометрию комплексов [28, 742]. Чтобы показать, каким образом применяется уравнение (2.36) при исследовании геометрии металл-лигандного комплекса, рассмотрим два примера. На рис. 2.12 показанынизкопольные и высокопольные сдвиги в системе ROH — 13 (М = Ей) в качестве растворителя использован D 1. Сдвиги качественно согласуются с (2.36) для модели, изображенной на рис. 2.13. Химические сдвиги в аналогичной системе борнеол — 13 (М = Рг) удается рассчитать с точностью 5,8% по уравнению (2.36), если принять расстояние Рг —О равным 3,0 А, а угол Рг —О —С равным 126° и двугранный угол Н - С—О-Рг равным 25° [14]. Разработаны эффективные расчетные методы определения положения атома металла относительно лиганда, исходя из наблюдаемых химических сдвигов 1Н по уравнению (2.36) [32, 216, 422]. Контактные сдвиги могут давать вклад в наблюдаемые сдвиги протонов, связанных с первыми двумя-тремя атомами углерода вблизи гетероатома [610]. Реагенты, содержащие хиральные центры, дают неэквивалентные спектры энантиомерных лигандов, что позволяет непосредственно оценивать оптическую чистоту препарата [347], Сдвиги бифункциональных молекул можно разложить на вклады от двух отдельных комплексов [445]. [c.308]

    Оптически активные реагенты сдвига используют для определения энантиомерной чистоты сульфоксидов [21а] абсолютная конфигурация сульфоксидов может быть определена методом ЯМР [21бгв] при использовании хиральных растворителей типа (—)-(К)-2,2,2- трифтор-1-фенщ1этанола. " [c.256]

    Для проверки диастереотопных отношений групп также можно применить критерий замещения. Если замещение каждой группы С. на хиральную или ахиральную группу О дает ряд диастереомеров, то группы О диастереотопны. Этот критерий можно применить к рядам диастереотопных атомов водорода, изображенных на рис. 11. Замещение одного или другого диастереотоп-ного атома водорода на дейтерий приводит к диастереомерам, которые можно легко различить, обозначив их цис-транс, экзо-зндо или аксиалъный-экваториальный. Диастереомеры могут быть хиральными, например производные приведенных выше трех хиральных молекул, или ахиральными, например производные хлорэтилена, бициклобутана и циклогексана в конформации кресла. В 2-хлориндане (Х1д) и в трициклической молеку.ле (Х1з) наборы диастереотопных атомов водорода имеют энантиотопные аналоги. Поэтому замещение диастереотопных атомов водорода в этих молекулах на атомы дейтерия дает хиральные диастереомеры, даже если до замещения сами молекулы были ахиральны. При подходящем масштабе времени наблюдения (см. разд. VI) диастереотопные группы от.личаются по своим физическим и химическим свойствам (например, по химическим сдвигам в ЯМР-спектрах, по скоростям реакций) даже в ахиральном впе-молекулярном окружении. Подход хирального или ахирального реагента к двум диастереотонным сторонам приводит к двум диастереомерным переходным состояниям. Так, восстановление кетона Х1и алюмогидридом лития дает два мезо-диастереомера. [c.29]


    Наиболее широко для определения соотношения энантиомеров используются хроматографические методы [6 —8] и метод ЯМР [ 5,9]. В ЯМР-спектроскопии удобными параметрами служат неэквивалентные химические сдвиги отдельных сигналш диастереотопных групп и относительные интегральные интенсивности этих сигналов. Что >1 различить сигналы энантиотопны< групп [ 10] в смеси энантиомеров, их надо сделать диастереотопными за счет внешнего влияния, используя хиральные лантаноидные сдвигающие реагенты [ П] или хиральные растворители [ 12]. Другой вариант - смесь энантиомеров превращают с помощью соответствующего хирального реагента в смесь диастереомеров, и тогда энантиотопные группы исходного образца становятся внутренне диастереотопными [ 5,8]. [c.160]

    Известно несколько примеров определения энантиомерной чистоты хиральных карбонильных соединений методом ЯМР с использованием хиральных лантаноидных сдвигающих реагентов [11, 64-66] однако применение для этих целей устойчивых диастереомерных производных карбонильных соединений изучено менее подробно. В работе [67] показано, что в ПМР-спектрах альдиминов (20), полученных из частично расщепленных а-замещенных альдегидов (18) и энантиомерно чистого 2-амино-1-метоксиментена-8 (19), проявляется неэквивалентность химических сдвигов протона при С-1 (5 = 0,17 м. д.)о Этого различия достаточно для определения энантиомерного состава таких альдегидов. Присутствие избытка реагента 19 не мешает анализу с помощью ЯМР-спектроскопии. [c.170]

    Реагенты парамагнитного сдвига могут оказать большую помощь в стереохимических исследованиях, как это показано на ряде примеров в работах [50—55]. Кроме того, известно [56], что оптически активный реагент парамагнитного сдвига гр гс-[3-(грет бутилоксиметилен)< -кам-форато]европий(1П) может быть использован для определения энантиомерной чистоты вещества. В работе 58] сообщается о попытках использования хиральных реагентов парамагнитного сдвига для выявления энантиотопных протонов. [c.336]


Смотреть страницы где упоминается термин Сдвигающие реагенты хиральные: [c.152]    [c.336]    [c.611]    [c.35]    [c.24]    [c.162]    [c.210]    [c.111]   
Хроматографическое разделение энантиомеров (1991) -- [ c.34 ]




ПОИСК





Смотрите так же термины и статьи:

Хиральность



© 2025 chem21.info Реклама на сайте