Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Использование ядерных реакторов для получения радиоактивных изотопов

    К мишеням для облучения в ядерном реакторе предъявляется ряд требований объем мишеней должен быть минимальным, так как стоимость облучения зависит от загрузки каналов реактора, объем которых лимитирован мишень должна быть взрывобезопасной, радиационно и термически устойчивой состав и чистота мишени должны быть такими, чтобы отсутствовали ядерные реакции, приводящие к образованию примесных радиоактивных изотопов. В связи с этим оптимальными для облучения являются простые вещества высокой чистоты, окислы и для небольших времен облучения— карбонаты. Использование хлоридов для получения радиоактивных изотопов щелочных металлов приводит к параллельному образованию из хлора радиоактивных изотопов и по реакциям С1(ге, уо) 5, з СГ(п, а) Р и хлора по реакции С1(га, у) > С1. В этом случае перед использованием необходима химическая переработка мишени с целью разделения изотопов С1, и щелочного металла. [c.237]


    Одним из важнейших типов ядерных процессов, дающим возможность получения радиоактивных изотопов почти всех элементов, является реакция радиационного захвата нейтронов [31, 32]. Широкое использование этой реакции связано, прежде всего, с наличием мощных источников нейтронов (ядерных реакторов). [c.23]

    Указанные преимущества тяжеловодных реакторов обеспечили им приоритет в развитии ядерных энергетических программ многих стран, не имеющих мощностей для производства обогащённого урана. Однако в бывшем СССР в ядерной энергетике они применялись только для специальных целей. В настоящее время, исходя из уроков аварии на Чернобыльской АЭС, а также из присущей тяжеловодным реакторам внутренней безопасности (в реакторах, где тяжёлая вода одновременно является теплоносителем и замедлителем нейтронов, сокращается критическая масса реактора и достигается отрицательный температурный коэффициент реактивности), отношение к их использованию в России пересмотрено. Примером этого является достигнутая в 1995 году международная договорённость о сотрудничестве в создании первого энергетического тяжеловодного реактора ВВР-640, строительство которого намечено в Приморье. Реализация в России энергетической программы на основе тяжеловодных реакторов потребует для её обеспечения значительных объёмов тяжёлой воды (так, уже упомянутый выше реактор ВВР-640 потребует около 600 тонн ВгО), которая, вероятно, будет закупаться за рубежом. Потребность в ВгО существует и вне зависимости от нужд в этом продукте большой энергетики. Она связана прежде всего с созданием и эксплуатацией в РФ, а также в других странах СНГ тяжеловодных исследовательских ядерных реакторов, первый из которых был введён в действие ещё в 1949 году в Институте теоретической и экспериментальной физики АН СССР в Москве. Реактор был предназначен для физических, биологических, радиационно-химических исследований, а также для получения радиоактивных изотопов. Аналогичные реакторы действовали в Институте атомной энергии им. И.В. Курчатова в Москве, в Екатеринбурге, в Харькове (в Физико-техническом институте низких температур), а также во многих научных центрах бывших союзных республик и в аналогичных центрах бывших стран СЭВ. [c.211]

    Кроме получения радиоактивных изотопов без носителя с помощью циклотрона получают ряд практически важных радиоактивных изотопов тех элементов, для которых в ядерном реакторе ие может быть получен радиоактивный изотоп с удобными для использования свойствами. [c.241]


    Использование ядерных реакторов для получения радиоактивных изотопов [c.77]

    В ядерной энергетике — топливо для атомных и для проектируемых термоядерных электростанций, изготовление мишеней для инерциального термоядерного синтеза, применения, основанные на малом или, наоборот, большом сечении поглощения нейтронов теми или иными изотопами (конструкционные материалы в реакторостроении, замедлители и поглотители нейтронов), использование изотопов для получения других стабильных и радиоактивных изотопов в ядерных реакциях на ускорителях и реакторах. [c.37]

    В результате ядерной цепной реакции деления урана или плутония в реакторах устанавливается постоянный поток нейтронов. В то время как нейтроны и энергия, освобождаемые при каждом расщеплении атома, используются или для производства электро-и тепловой энергии, или для создания плутония, или для осуществления иных ядерных реакций, осколки деления накапливаются в виде отходов. По мере своего накопления осколки деления поглощают нейтроны и уменьшают число делящихся атомов, тем самым отравляя реактор. По этой причине тепловыделяющий элемент (ТВЭЛ) периодически извлекают из реактора и оставшееся в нем ядерное топливо очищают от осколков до первоначальной степени чистоты. Удаляемые таким образом продукты деления являются совокупностью элементов, относящихся к середине периодической таблицы. Большинство из них — радиоактивные изотопы, которые, испуская р- и у-радиацию, превращаются в стабильные элементы. Многие изотопы имеют очень короткие периоды полураспада. Ряд изотопов распадается наполовину примерно за год. В настоящее время возможно получение ТВЭЛ, в которых ядерное топливо используется до такой степени, когда уже экономически невыгодно вновь восстанавливать и выделять делящиеся вещества. Продукты деления в таком случае можно было бы оставлять в оболочке и, применяя довольно простую технику перемещения отработанных элементов из зоны реакции, использовать их еще раз как источники радиации очень высокой активности. Применение таких отработанных элементов в промышленности помогло бы разрешению проблемы удаления и использования радиоактивных отходов. [c.92]

    Задача этих сборников — предоставить информацию о путях использования делящихся материалов в ядерных реакторах для исследовательских целей, а также в реакторах для получения энергии и радиоактивных изотопов. [c.5]

    Применение атомной энергии развивается в настоящее время по двум-основным направлениям использование радиоактивных изотопов и энергетическое использование атомной энергии. Технической основой этих направлений является реакторостроение, поскольку ядерный реактор служит аппаратом для получения больших количеств радиоактивных изотопов и энергии. [c.271]

    Благодаря использованию ядерных реакторов аналогичных устройств получены сотни различных радиоактивных изотопов. Количество соединений, содержащих, например, С , постоянно возрастает. Только в Окри-дже (США) получено более 50 таких соединений и начиная с августа 1946 года выпущено в продажу более 93 ООО милликюри изотопа С1 (рис. 45). Обладая соответствующим оборудованием, любой радиохимик может синтезировать новое радиоактивное соединение. Преодолев трудности, сопряженные с получением меченых соединений, в которых радиоактивные изотопы занимают определенные положения внутри молекулы, можно зачастую осуществить сложные синтезы, вводя изотопы в питательные среды для растений или живот- [c.54]

    Еще более сильное действие на молекулы оказывают ядерные излучения (у-излучение, протоны, нейтроны и др.) и рентгеновское излучение. Раздел химии, занимающийся вопросами химического действия этих излучений, называется радиационной химией. В отличие от нее радиохимией называют химию радиоактивных элементов, в частности химию меченых атомов . Радиационная химия развивается в связи с развитием ядернсй физико-химии и ядерной энергетики. Атомные реакторы, ускорители частиц, радиоактивные изотопы дают разнообразные очень мощные потоки частиц, которыми все больше начинают пользоваться для осуществления химических реакций. Эти излучения рвут связи, выбивают отдельные атомы, порождают радикалы и ионы, а затем идут перегруппировки связей и возникают новые. Например, вместо двухстадийного обычного химического получения фенола из бензола можно получать это важнейшее вещество из бензола и воды в одностадийном процессе с использованием ядерных излучений. При этом из воды получаются радикалы ОН и Н и бензол далее реагирует по схеме [c.57]

    Можно использовать нейтроны и у-излучение непосредственно в реакторе, если прокачивать облучаемый материал через зону реактора. Однако и в этом случае нейтроны создают радиоактивные загрязнения, активируя атомы облучаемой смеси. В другом варианте нейтроны ядерного реактора активируют теплоноситель, транспортируемый к реагирующим компонентам. Если в качестве теплоносителя применять жидкий натрий, то натрий активируется, проходя через реактор под действием потока нейтронов возникает радиоактивный натрий-24 (с периодом полураспада 15 ч), который излучает у-кванты с энергией 1,37 и 2,75 Мэе. Вне реактора излучение радиоактивного натрия можно использовать для инициирования различных химических процессов. Этот метод предпочтительнее, поскольку продукты химических превращений не загрязняются радиоактивными изотопами и режим действия реактора не нарушается. Для получения долгоживущих изотопов используют нейтронное излучение при активации стабильного изотопа соответствующего элемента, помещенного в активную зону реактора. Так, например, получают кобальт-60 из кобальта-59. Тепловыделяющие элементы реактора (стержни) периодически заменяются. При извлечении из активной зоны они очень радиоактивны. Интенсивность излучения быстро уменьшается в результате распада короткожи-вущих изотопов. В это время стержни можно непосредственно использовать как интенсивный источник радиации. Практически срок использования излучения стержней составляет 3- месяца. После того как большая часть короткоживущих изотопов распадается, стержни поступают на химическую переработку для повторного извлечения горючего и очистки их от продуктов деления с большими периодами полураспада. Смесь продуктов деления, имеющая значительный уровень радиации, также может длительное время служить источником излучения. В конечном счете из этой смеси выделяются отдельные радиоактивные изотопы, такие, как цезий-137 и стронций-90, которые служат хорошими источниками - и у-излучения. [c.28]


    Рубидий и цезий. Металлические КЬ и Сз по химическим свойствам очень похожи на калий, но проявляют ббльшую химическую активность. На высокой химической активности основано их использование в качестве геттеров (газопоглотителей) в вакуумных электронных приборах. Атомы рубидия и цезия настолько непрочно удерживают валентные электроны, что их могут выбить кванты света. На этом основано использование этих металлов для получения фототока в фотоэлементах. Высокая пластичность рубидия и цезия нашла применение в смазочных композициях для космической техники. Цезий используют в атомных стандартах времени — атомных часах , а также как теплоноситель в ядерных реакторах. Радиоактивный изотоп применяют в медицине. Соединения рубидия используют как снотворные и болеутоляющие средства. [c.282]

    Из изотопных источников излучений наиболее широкое применение в качестве источника у-излучения получил Со , приготовляемый в ядерном реакторе по реакции Со (п, y) Со . Используется такжо slз выделяемый из продуктов деления (осколков) тяжелых ядер. Важной проблемой является использование у- и Р-излучений смеси осколков в виде концентратов , получающихся после химич. переработки тепловыделяющих элементов ядерного реактора (ТВЭЛ). Эффективность этих И. я. и. определяется временем, прошедшим от момента остановки реактора до их использования в радиационном аппарате, и возможностью получения концентратов с необходимой уд. активностью. При использовании изотопных источников у-излучения (в частности, Со ) с большой уд. активностью удается создать мощности поглощенных доз до 10 —10 рад сек. В качестве источников р-излучения применяют Sr , выделяемый из продуктов деления урана и прорращающийся в дочернин радиоактивный изотоп Y , также являющийся Р-излучателем Р , приготовляемый в ядерном реакторе но реакции Р (п, у)Р , и др. В качестве источников а-излучения используются Rn, Po i . Изотопные источники применяются в установках, предназначенных для облучения разнообразных объектов (универсальные установки), или в специализированных аппаратах, предназначенных для проведения определенных радиационно-химич. процессов. Преимущества изотопных источников излучений состоят в их простоте и безотказности в эксплуатации время действия практически определяется периодом полураспада изотопа. [c.168]

    А, А, Сапегин и Л. Н, Делоне были первыми исследователями, показавшими значение искусственных мутаций для селекции растений. В их опытах, проводившихся в 1928—1932 гг, в Одессе и Харькове, была получена серия хозяйственно-полезных мутантных форм у пшеницы. В 1934 г. А. А, Сапегин опубликовал статью Рентгеномутации как источник новых форм сельскохозяйственных растений , в которой указывались новые пути создания исходного материала в селекции растений, основанные на использовании ионизирующей радиации. Но и после этого к применению экспериментального мутагенеза в селекции растений длительное время продолжали относиться отрицательно. Лишь в конце 50-х годов к проблеме использования в селекции экспериментального мутагенеза был проявлен повышенный интерес. Он был связан, во-первых, с крупными успехами ядерной физики и химии, давшими возможность использования для получения мутаций различных источников ионизирующих излучений (ядерные реакторы, ускорители элементарных частиц, радиоактивные изотопы и др.) и высокореактивных химических веществ и, во-вторых, с получением этими методами на самых различных культурах практически ценных наследственных изменений. Особенно широко работы по экспериментальному мутагенезу в селекции растений развернулись в последние годы. Очень интенсивно они ведутся в Швеции, СССР, Японии, США, Индии, Чехословакии, Франции и некоторых других странах. В Институте химической физики АН СССР под руководством И. А, Рапопорта создан центр по химическому мутагенезу, координирующий работу многих сельскохозяйственных научно-исследовательских учреждений, использующих индуцированные мутации в качестве исходного материала в селекции. [c.216]

    Г Применение искусственных изотопов, как мощных и доступных источников облучения, достигло уже теперь больших успехов, а в ближайшем будущем обещает самое широкое распространение в разных областях народного хозяйства. Рассматриваемая область применения искусственных изотопов тесно связана с развитием ядерной техгюлогии, так как в настоящее время единственным источником их получения в больших количествах являются урановые реакторы, где они могут получаться как побочные продукты или отбросы процессов использования атомной энергии. Разнообразные применения радия общеизвестны, но стоит он очень дорого, и препараты его с активностью порядка одного кюри доступны лишь немногим лабораториям и клиникам. Между тем, средней величины реактор может давать за гораздо меньшую стоимость, в качестве отходов, препараты искусственных изотопов с активностью в десятки тысяч кюри, эквивалентные десяткам килограммов радия. Во многих случаях искусственные -излучатели могут с большим успехом заменять рентгеновские приборы [1330]. Они дешевы, портативны и применение их не связано с довольно сложными установками, необходимыми для питания рентгеновских трубок.При помощи изотопов, дающих умеренно жесткие -лучи, например Тт , можно получать для медицинских целей те же результаты, какие дает большая больничная рентгеновская установка в 100 киловольт, а такое же жесткое излучение, как, например, от часто применяемого Со , может быть получено в рентгеновских установках лишь с генераторами свыше 1млн.вольт. Всеэти преимущества открывают возможности для широкого применения радиоактивного облучения в крупных промышлеш1ых масштабах. [c.467]


Смотреть страницы где упоминается термин Использование ядерных реакторов для получения радиоактивных изотопов: [c.32]    [c.707]    [c.3]    [c.174]    [c.125]   
Смотреть главы в:

Новые элементы в периодической системе Д И Менделеева -> Использование ядерных реакторов для получения радиоактивных изотопов




ПОИСК





Смотрите так же термины и статьи:

Изотопы радиоактивные

Радиоактивность использование

Реактор ядерный

Ядерные реакторы и их использование



© 2025 chem21.info Реклама на сайте