Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ядерные реакторы и их использование

    Для горячего синтеза можно использовать два способа получения атомов отдачи облучение того или иного соединения или смеси соединений ядерными частицами, как правило, нейтронами ядерного реактора использование дочерних радиоактивных атомов, получающихся при радиоактивном распаде или в процессе деления ядер. [c.492]


    Продукты конденсации терфенилов (полифенилы, трифенилены и др.), образующиеся при использовании органических теплоносителей в ядерном реакторе, регенерируются при помощи гидрокрекинга [c.73]

    Радиоактивные изотопы получают в специальных установках, а также в ядерных реакторах, после чего изотопы передают с соблюдением строгих мер предосторожности для использования в народном хозяйстве, в научно-исследовательских организациях и в медицине. [c.83]

    В настоящее время рассматриваются возможности экономичного сочетания процессов синтеза метанола из таких источников сырья, как природный газ, газы нефтеперерабатывающих заводов, некоторые фракции нафты, остаточные масла и даже уголь. Поэтому следует рассмотреть также предложения об использовании с помощью подходящего теплоносителя части тепла, которое выделяется в ядерных реакторах, для превращения угля в синтез-газ. В результате этого может быть создан в целом оптимальный процесс. [c.210]

    Недавно исследована возможность использования (для проведения эндотермического процесса газификации угля) тепла ядерных процессов, в частности подачи гелия, имеющего температуру около 950°С, из высокотемпературных ядерных реакторов. Это позволит превращать в синтез-газ весь уголь, не сжигая часть его с целью получения тепла, необходимого для газификации. [c.225]

    Новая техника открыла алюминию новые пути использования. Так, широко стали применяться материалы из спеченного алюминиевого порошка или пудры (САП). Путем прессования САП при 500—600°С получают материал, отличающийся высокой жаропрочностью, которая обусловлена наличием тончайшей оксидной пленки, образующейся на поверхности частиц алюминиевого порошка. Спеченный алюминиевый порошок применяется при изготовлении оболочек для урановых стержней, используемых в ядерных реакторах оболочки защищают уран ог быстрого разрушения в воде при повышенной температуре. [c.259]

    Широкое развитие ядерной энергетики — основной путь преодоления энергетического кризиса. Предполагается, что к концу нашего века доля ядерного топлива в мировой структуре топливного баланса может составить около 20%, а к 2100 г. — до 60%. Развитие ядерной энергетики определяется прежде всего возможностью полного использования природных урановых месторождений пока что на атомных электростанциях, в реакторах на тепловых нейтронах потребляется большей частью уран-235, содержание которого в природных рудах не более 0,7%. Остальные 99,3% приходятся на долю неделящегося изотопа — урана-238, который непосредственно не может служить ядерным горючим. Однако уран-238 уже используется в урановых реакторах на быстрых нейтронах. где он превращается в новое искусственное ядерное горючее— плутоний-239. Наиболее эффективно сочетание реакторов на медленных нейтронах, использующих уран-235, с реакторами-размножителями на быстрых нейтронах, использующими уран-238, в которых нарабатывается плутоний-239. В таких системах ядерное горючее отдает в 20—30 раз больше энергии, чем в обычных ядерных реакторах, и привлекаются к использованию большие запасы бедных урановых руд. [c.35]


    Газификация. Газификация твердого топлива в последние десятилетня была законсервирована в связи с широким использованием природного газа. Ныне она вновь приобретает значение как источник искусственного газообразного топлива и химического сырья — синтез-газа, восстановительного газа, водорода. Разрабатываются новые, более эффективные методы газификации дешевого твердого топлива под давлением с использованием теплоты ядерных реакторов. [c.50]

    Практическое осуществление этого способа получения водорода возможно путем замены реакции непосредственного разложения воды термохимическим циклом, состоящим из нескольких реакций, имеющих значения констант равновесия, допустимые для практики. Изучено и предложено много термохимических циклов с целью разложения воды при температурах, не превышающих температуру теплоносителя, отходящего из ядерного реактора (при использовании отбросной теплоты ядерных реакторов). В разработанных термохимических циклах промежуточные вещества — галогены, элементы VI группы (сера), металлы И группы (Mg, Ва, Са), переходные элементы с переменной степенью окисления (V, Ре)— имеют большое сродство либо по отношению к водороду, либо к кислороду. Ниже приведен пример термохимического цикла реакций, приводящих к разложению воды на водород и кислород  [c.82]

    Полученные результаты позволяют считать, что проведение процесса конверсии на выбранном катализаторе, обеспечивающем превращение гомологов метана в водород и двуокись углерода при низкой температуре, может быть осуществлено в условиях, приемлемых для промышленной реализации. Принимая во внимание низкую температуру и высокий эндотермический эффект, этот способ представляется наиболее перспективным из рассмотренных с точки зрения возможности использования тепла ядерных реакторов. [c.60]

    Сочетание в керметах различных, часто противоположных, качеств обусловило использование их в качестве конструкционных материалов для ракетных двигателей, тепловыделяющих элементов (ТВЭЛ) и регулирующих стержней ядерных реакторов, деталей насосов и сопел аппаратов, работающих в агрессивных средах, теплозащитных элементов космической техники. [c.327]

    Проблема энергообеспечения транспорта может быть решена при создании и внедрении высокотемпературных газоохлаждаемых ядерных реакторов. Широкое применение таких реакторов связывают с осуществлением атомно-водородной энергетической концепции, предусматривающей крупномасштабное производство электроэнергии и водорода с использованием последнего в качестве транспортного топлива, а также для других энергетических и сырьевых нужд народного хозяйства. [c.15]

    Термический к. п. д. таких циклов может достигать 55%. Однако реализация их сдерживается из-за высоких температур реакций, которые могут быть обеспечены при использовании тепла высокотемпературных ядерных реакторов, а также коррозионной агрессивностью среды, что требует применения специальных конструкционных материалов для оборудования. В связи с этим термохимические циклы не вышли пока из стадии исследовательских работ. [c.131]

    Титан немного тяжелее алюминия, но в три раза прочнее его к тому же титан и его сплавы обладают высокой коррозионной стойкостью, жаростойкостью. Они используются в качестве конструкционного материала в самолетостроении, ракетной технике и т. д. Этим требованиям отвечают также легкие магний-циркониевые сплавы. Цирконий почти не захватывает тепловые нейтроны, поэтому он используется в качестве конструкционного материала для атомных реакторов. Использование циркония в ядерной технике потребовало тщательного разделения циркония и гафния, так как гафний в этом случае является вредной примесью. [c.127]

    Применение в энергетике. Бор (изотоп 5°В) интенсивно поглощает медленные нейтроны, поэтому используется для изготовления регулирующих стержней атомных реакторов и защитных устройств от нейтронного облучения. Кристаллический бор обладает полупроводниковыми свойствами и используется в полупроводниковой технике (его проводимость при нагревании до 600 С возрастает в 10 раз). Исключительной химической стойкостью, твердостью, жаростойкостью обладают многие соединения бора с металлами побочных подгрупп. Алюминий и его сплавы применяют в энергетике в качестве конструкционного и электротехнического материала. Галлий применяют в полупроводниковой технике, так как его соединения с мышьяком, сурьмой, висмутом, а также аналогичные соединения индия обладают полупроводниковыми свойствами. Галлий используют при изготовлении высокотемпературных термометров с кварцевыми капиллярами (измерение температуры до 1500° С). Галлий может быть использован как хороший теплоноситель в системах охлаждения ядерных реакторов, лазерных устройств. Индий обладает повышенной отражательной способностью и используется для изготовления рефлекторов и прожекторов. Способность таллия при температуре ниже 73 К становиться сверхпроводником делает его перспективным материалом в энергетике. Представляют практический интерес многие соединения этих металлов и соединения бора, например нитрид бора ВЫ—боразон, отличающийся исключительной твердостью и химической инертностью. [c.230]


    Для осуществления радиационно-химических процессов используются различные источники излучений. Одним из наиболее распространенных является радиоактивный кобальт с уизлучением, имеющим энергию более (1 МэВ). На практике начали применяться ускорители электронов, а также способы непосредственного использования излучений ядерных реакторов. [c.200]

    Описание лабораторий для работ первого класса ие входит в нашу задачу, так как такие работы проводятся только при активационном анализе, с использованием ядерного реактора. [c.330]

    В 1954 г. в СССР была пущена первая в мире атомная электростанция на ядерном горючем. В настоящее время построены и строятся мощные ядерные электростанции. В 1958 г. введен в действие ядер-ный реактор на быстрых нейтронах. В 1959 г. началась эксплуатация атомного ледокола Ленин . Использование ядерных реакторов в качестве мощных паросиловых установок в Советском Союзе расширяется с каждым годом. [c.76]

    Перспективно использование галлия и его сплавов в качестве жидкого теплоносителя в ядерных реакторах. [c.188]

    Вместе с тем ведутся работы по изучению новых возможностей осуществления сжигания воздуха (путем использования регенеративных печей и тепла ядерных реакторов). Если при [c.427]

    Замечательным примером применения радиоактивных индикаторов в аналитической химии является радиоактивационный анализ. Он основан на образовании в анализируемом материале радиоактивных изотопов или продуктов их превращений определяемых элементов под действием ядерных частиц. Его целесообразно использовать для определения малых примесей, когда обычные аналитические методы непригодны из-за ограниченной чувствительности. В табл. 19.10 приведена чувствительность активационного анализа при использовании для облучения анализируемого вещества медленных нейтронов ядерного реактора. [c.594]

    Изучение строения атомных ядер, радиоактивности и искусственное приготовление радиоактивных изотопов нашло применение в различных областях науки и техники, а-, р -, р+-, -излучение и выделение свободных нейтронов прежде всего оказывают сильнейшее биологическое воздействие на живые организмы, и использование различных ядерных процессов должно производиться в соответствующих условиях и с применением надежной защиты. Мощные дозы излучения существенно влияют на свойства конструкционных материалов и металлов и, как правило, понижая их пластические свойства, делают их хрупкими. Поглощение Р -, и 7-излучения создает микродефекты в кристаллах (ближние и дальние пары вакансия и атом в междоузлии), нарушает связи в неметаллических материалах. Металлы, обладающие меньшим поперечным сечением захвата (а), в меньшей степени подвергаются воздействию излучения и могут быть использованы для изготовления деталей и узлов ядерных реакторов. Такими являются металлы V, N6, Т1, 2г и др. [c.66]

    Практическое значение Т1 и 2г особенно велико для металлургии. Присадка титана придает стали твердость и эластичность, а присадка циркония сильно повышает ее твердость и вязкость. За последнее время стало быстро развиваться использование титана в самолетостроении, а циркония — при сооружении ядерных реакторов. Соединения обоих элементов. находят применение в различных отраслях промышленности. Гафний и его соединения пока почти не используются. [c.345]

    Проблема закупоривания в параллельных каналах явилась одним из главных препятствий при использовании взвесей в качестве теплоносителей ядерных реакторов. В этом случае любое закупоривание канала, обеспечивающее смывание поверхности тепловыделяющего элемента, привело бы к наиболее разрушительным последствиям. [c.196]

    При использовании бериллия в различных типах ядерных реакторов и даже в различных частях одного и того же реактора отношения нейтронных потоков Фб/Фт могут существенно различаться, а это в свою очередь обусловит и различие в количествах накапливаемых газовых атомов. Экспериментальное определение количества образовавшегося газа (выделение газа при расплавлении навески) различными авторами показало большое расхождение. Так, при дозе облучения, равной 10 0 н/см ( 1 Мэв), были найдены следующие объемы газа в 1 г бериллия, мм /г 25 [66], 55 [67], 57 [68], 67 [69], 73 [70], 103 [71], 124 [72]. [c.32]

    Рассмотрены свойства различных классов поглощающих материалов, облученных в щироком диапазоне интегральных доз и температур. Сформулированы принципы создания радиационностойких композиций и даны границы их использования в качестве материалов стержней регулирования ядерных реакторов. [c.208]

    За 35 лет своего существования ядерная энергетика шагнула далеко вперед, и будущее мировой экономики сегодня трудно представить без ее использования. В настоящее время в 32 странах мира работают 417 ядерных реакторов суммарной мощностью около 300 тыс. МВт, в том числе 56 реакторов общей мощностью 33,6 тыс. МВт действуют в нашей стране. В стадии строительства в различных странах находятся еще 120 реакторов с общей мощностью, превышающей 100 тыс. МВт (табл. В). [c.5]

    В действительности же нри вычислении точного раснределения плотно сти нейтронов в ядерном реакторе нельзя разделять процессы диффузии и замедления. Как уже было отмечено в предыдущих главах, такое разделение было сделано для упрощения сложных вопросов, чтобы не привлекать сразу большого числа аналитических методов и физических представлений. Одиако необходимо отметить, что несмотря на то, что каждая из теорий лишь нриблигкенпо описывает общую картину в реакторе, в практике встречается много частных случаев, когда существенную роль играет или процесс замедления, или процесс диффузии, и с некоторым приближением можно применить соответствующую теорию, например в случае использования для расчета реактора моноэнергетической теории диффузии (см. гл. 5). Предполагалось, что система близка к тепловой и, следовательно, моноэнергетическое рассмотрение долн но давать хорошее ириближение для пространственного раснределения тепловых нейтронов. [c.186]

    Ядерная энергетика служит мощным средством технического прогресса, в частности повышения эффективности химико-технологических процессов. При широком развитии ядерной энергетики появляется возможность использовать теплоту отходящих газов ядерных реакторов (с температурой 900—1000°С) в металлургии, при переработке твердого топлива, в химической промышленности и других отраслях промышленности особенно перспективно использование отбросной теплоты ядерных реакторов для крупномасштабных химико-технологических процессов, например для производства водорода и сиитез-газа (смесей СО и Нг) путем конверсии углеводородов с водяным паром. Водород — промежуточный продукт, который может применяться в качестве энергоносителя, восстановителя в металлургии и химического сырья. Водород и продукты его переработки (метанол) рассматривают как оптимальное моторное топливо будущего для транспорта и быта (см. с. 71). [c.36]

    Водород считают универсальным энергоносителем, который может служить передатчиком энергии от ядерного реактора разнообразным потребителям в тех случаях, когда невозможно непосредственное использование энергии ядерного топлива. Основные преимущества водорода как экологического топлива и энергоносителя следующие 1) отсутствие золы, ЗОг, СОг, СО и других загрязнителей атмосферы в продуктах сгорания 2) источником водорода может служить вода — дешевое серье, запасы которого неисчерпаемы и возобновляемы, так как при сгорании водород вновь превращается в воду 3) теплота сгорания молекулярного водорода, составляющая 125 510 кДж/кг, почти в четыре раза выше, чем угле- [c.71]

    При использовании для расчета метода свободного тела фланцы представляют как кольцевые пластины. Однако может оказаться предпочтительнее метод конечных элементов, так как оп дает более точную модель соединения, В любом случае болты заменяются цилиндрами с площадью поперечного ссчепня, равной всей площади болта, а влияние отверстий lia жесткость фланца учитывается так же, как это делалось для перфорированных пластин 146]. Таким образом, задача сводится к расчету симметричных тел вра-п1,епия. Этот метод применен к расчету крышек головок ядерных реакторов 47, 48]. Расчет безболтоаых соединений был описан также в 149]. Описание этого и других типов соединений было опубликовано автором [50]. [c.270]

    О. Образование вихря в параллельном потоке. Вибрация при аксиальном или параллельном течении является результатом развития вихрей вдоль длины трубы. В ядерных реакторах и связанных е ними теплообменниках иногда возникают вибрации этого типа. Обычрю они имеют длинные безопорные пролеты труб, относительно узкие меж-трубные проходы и очень высокие аксиальные скорости. Метод, приведенный в [23], позволяет определить частоту турбулентного вихря, инициированного потоком, движущимся параллельно трубам, который может возбудить вибрацию труб на частотах собственных колебаний. Метод позволяет вычислить амплитуду вибрации в середине пролета с использованием экспериментального значення критической скорости. В большинстве промышленных кожухотрубных теплообменников вибрация, обусловленная 0 [c.326]

    Процесс паровой каталитической конверсии углеводородов с целью производства водорода обычно проводят при температурах 1070-1120 К [1,2] о подводом в слой катализатора тепла, необходимого для нагрева реагирующих компонентов и проведения высокоэндотермических реакций. При проведении высокоэндотермических процессов на агрегатах большой иоошости перспективно использование тепла ядерных реакторов. Применительно к процессу высокотемпературной паровой каталитической конверсии возможность использования тепла ядерных реакторов встречает затруднения, связанные о недостаточно высокой разностью между температурой теплоносителя и рабочей температурой процесса. Поэтону проведение процесса конверсии при бо- [c.55]

    Необходимо отме1Ить, что возможность использования тепла ядерных реакторов в описанной схеме непосредственно зависит не от рабочей температуры процесса конверсии, а от температуры регенерации поглотителя. Перспективность схемы определяется в первую очередь возможностью снижения температуры регенерации поглотителя. [c.57]

    Проводимые в настоящее время работы по совершенствованию автотермических процессов направлены в основном на повышение давления газификации, увеличение единичной мощности и термического к. п. д. реакторов, максимальное сокращение образования побочных продуктов. В автотермических процессах газификации до 30% угля расходуется не на образование газа, а на получение необходимого тепла. Это отрицательно сказывается на экономике процессов, особенно при высокой стоимости добычи угля. Поэтому значительное внимание уделяется в последнее время разработке схем аллотер-мической газификации твердого топлива с использованием тепла, получаемого от расплавов металлов или от высокотемпературных ядерных реакторов. [c.97]

    Изотоп плутония зврц под воздействием медленных нейтронов также подвергается делению и может быть использован в качестве ядерного горючего, а в атомных бомбах — как взрывчатое вещество. В настоящее время плутоний в ядерных реакторах получается в больших количествах. [c.76]

    Чистый, свободный от гафния, цирконий используют для конструкций ядерных установок (стенки ядерных реакторов), так как он тормозит, но очень мало поглощает нейтроны и выдерживает действие высокой температуры. Гафний же сильно поглощает нейтроны, поэтому цирконий освобождают от примеси гафния, который обычно присутствует в цирконии в количестве 2%. Накопление гафния, выделенного из природных соединений циркония, заставило искать области его использования в технике. В настоящее время гафний рекомендован для изготовления антенн, прочных высокоэмиссионных электродов и в качестве добавки к электродным массам наряду с другими металлами. Он предложен как материал для геттеров на медной и никелевой основе и как добавка к вольфраму в целях задержки рекристаллизации последнего. [c.332]

    Стекольная и керамическая промышленность. РЗЭ приобрели большое значение в производстве стекла, керамических и абразивных материалов. В стекольной промышленности РЗЭ применяются как для окрашивания стекла (в желтый цвет — СеОа, красный — N(3203, зеленый—РгаОз и т. д.), так и для обесцвечивания его (соли N(1, Ег, Се), для изготовления специальных стекол, поглощающих УФ-лучи (N(1 — для защиты от солнечных лучей, N(1 + Рг + Се— в стекле очков для сварочных и других работ [10]). Чистая окись лантана применяется в оптических стеклах к объективам ( ютоаппаратов. В специальные стекла для призм Николя и приборов Тиндаля вводят окислы неодима и иттрия. Неодимовые стекла употребляются в качестве фильтров в рентгеноструктурных и астрофизических исследованиях [11]. Большое значение приобрело использование церия для изготовления стекол, не подвергающихся действию радиации, которые используются для защиты от излучения в ядерных реакторах [12]. Весьма перспективно применение РЗЭ в керамике для самых различных целей специальные тигли — для плавления металлов (Се5 плавится при 2900°), высокотемпературные покрытия (Се5 и УаОз) — для ракето- и авиастроения [13]. На основе создана керамика, прозрачная, как стекло, пропускающая ИК-лучи, стойкая до 2200° [14], Высокотемпературные керамические нагреватели на основе 2гОа, содержащие до 15% УгОз, выдерживают на воздухе нагревание выше 2000° [9, 15]. РЗЭ в глазури уменьшают ее растрескивание, усиливают блеск, придают ей различную окраску [4]. [c.87]

    Если режим эксплуатации ядерного реактора ориентировать на использование энергии, то ои может быть положен в основу мощной энергоцентрали, не требующей постоянного питания топливом. Принципиальная схема такой установки показана на рис. ХУ1-30. [c.528]

    Опубликованные экспериментальные данные по теплообмену на стенках в настоящее время относятся. к весьма широкому кругу условий. Большинство этих исследований касается восходящих потоков взвесей, движущихся по трубам. С другой стороны, сравнительно мало внимания уделялось изучению теплообмена в таких менее распространенных системах, как сопла [15] и поперечноточные теплообменники [16], а также высокоскоростным [17] и горизонтальным течениям в трубах [18, 19]. На фиг. 7.1 представлены некоторые результаты, полученные для течений в вертикальных трубах более полная сводка подобных результатов приведена в работах [23, 24]. В обзоре Рейзинга [24] потоки взвесей рассматриваются с точки зрения использования их в качестве теплоносителей для ядерных реакторов [16, 25]. Как теплоносители потоки взвесей частиц графита могут иметь достаточно высокие значения коэффициентов теплообмена [26], помимо других преимуществ, например высокой теплоемкости, высокой термостойкости, отсутствия жестких требований к герметизации [27—29], Схема такого охлаждения ядерного реактора до сих пор полностью не разработана из-за многочисленных трудностей, кото-. рые будут выявлены далее в тексте. Значительный интерес к процессу теплообмена возникает при разработке проточных химических реакторов [30], в частности для сушки и пневмотранспорта [31] тонкодисперсных продуктов. [c.231]

    Радиационная химия углеводородов относительно широко изучена в области сравнительно низких температур Ц,5, 7], но в области высоких температур проведено лишь крайне небольшое число исследований. Вместе < тем результаты, получаемые при температуре, равной или близкой к температуре начала крекинга, имеют важное значение для изучения радиационных процессов. В этом разделе приводятся результаты исследований, проведенных на индивидуальных углеводородах и газойлевых фракциях в поточных условиях с использованием как кобальта-60 (3200 кюри), так и смешанного излучения в активной зоне ядерного реактора в Брукхейвене. Экспериментальная методика, применявшиеся реакторы и методы дозиметрии подробно описаны в литературе [20]. Состав газойлевых фракций, применявшихся >в этих исследованиях, приведен в табл. 10. [c.141]

    В книге дано краткое описание ядерных, физических и механических свойств бериллия и его коррозионного поведения в ряде теплоносителей. Рассмотрены условия работы бериллиевых деталей ядерных реакторов различного типа, на основе чего сформулированы основные требоваиия, предъявляемые к материалу. Впервые систематизированы данные о поведении бериллия при облучении в широком диапазоне интегральных доз и температур. Описаны основные процессы и явления, происходящие в материале под воздействием облучения, установлена связь между структурой материала и его свойствами. Подробно рассмотрены некоторые общие закономерности радиационного повреждения бериллия, что позволяет установить предельные условия применимости материала, оценить его работоспособность и дать рекомендации по использованию бериллия в ядерных реакторах. [c.2]

    За истекшие 10—15 лет проведены фундаментальные исследования в этой области Барнсом и Ричем с сотр. в Англии, Эллсом с сотр. в Канаде, Хикменом в Австралии, Нагасаки в Японии, авторами настоящей работы, а также В. Н. Быковым, И. Г. Тихинским с сотр. в Советском Союзе и некоторыми другими. Причем, как отмечают специалисты, использование бериллия в ядерных реакторах почти всех известных типов считается исключительно выгодным с экономической точки зрения. [c.4]


Смотреть страницы где упоминается термин Ядерные реакторы и их использование: [c.316]    [c.16]    [c.98]    [c.238]    [c.93]    [c.309]    [c.529]   
Смотреть главы в:

Ядерная химия и радиохимия -> Ядерные реакторы и их использование




ПОИСК





Смотрите так же термины и статьи:

Использование ядерных реакторов для получения радиоактивных изотопов

Реактор ядерный

Реактор ядерный с использованием быстрых нейтронов



© 2025 chem21.info Реклама на сайте