Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Экспериментальное изучение турбулентной Диффузии

    ЭКСПЕРИМЕНТАЛЬНОЕ ИЗУЧЕНИЕ ТУРБУЛЕНТНОЙ ДИФФУЗИИ [c.136]

    Экспериментальное изучение продольной и поперечной турбулентной диффузии в барботажном слое показало, что коэффициент радиальной диффузии в несколько раз меньше коэффициента продольной диффузии [2СГ, 48]. В газовой фазе поперечная турбулентная диффузия оказалась еще меньше по сравнению с продольной, особенно при низких скоростях газа [49]. Указанное обстоятельство подтверждается, в частности, возможностью использования однопараметрических диффузионных моделей для описания гидродинамики структуры потоков при отсутствии поперечной неравномерности в их движении. [c.153]


    Процесс распространения пламени в турбулентном потоке, наиболее часто встречающийся в практике сжигания газа в промышленности, недостаточно изучен. Однако имеющийся экспериментальный и теоретический материал [Щелкин, Трошин, 1963] позволяет достаточно четко представить картину распространения пламени в турбулентном потоке. Процесс распространения пламени за счет молекулярной теплопроводности, рассмотренный выше, соответствует сжиганию газа в ламинарных потоках. В турбулентных потоках при наличии пульсаций скорости дело обстоит несколько иначе. Здесь также будет иметь место явление молекулярной теплопроводности, но к нему добавится перенос тепла за счет турбулентной теплопроводности — турбулентной диффузии. При турбу- [c.48]

    Все вышеприведенные сведения получены в результате теоретического и экспериментального изучения процессов экстракции, физической абсорбции и хемосорбции. Можно предположить, что ещ-е в большей степени явление поверхностной турбулентности проявляется при осуществлении ре-акционно-диффузионных процессов, где за счет диффузии отводятся продукты реакции, проходящей в жидкой фазе. Действительно, можно показать, что в этом случае отвод продуктов способствует увеличению скорости обратимого процесса в соответствии с принципом Ле-Шателье, а для необратимого — вследствие закона действия масс, так как в реакционной массе при отводе продуктов реакции увеличивается концентрация реагентов. [c.20]

    Многие практические задачи по турбулентности включают область вблизи твердой поверхности, поскольку по своему смыслу именно эта область служит местом зарождения турбулентности и поскольку именно в этой области требуется вычислять напряжения трения и скорости массопереноса. Делалось много попыток изучить экспериментальные данные с целью обобщения свойств разных характеристик турбулентного переноса вблизи поверхности. К таким характеристикам относятся средние высших порядков, например напряжение Рейнольдса, вытекающие из усреднения уравнений движения и конвективной диффузии. Это обобщение имеет вид универсального закона распределения скоростей вблизи поверхности. Тот же результат можно выразить с помощью турбулентной вязкости и турбулентной кинематической вязкости — коэффициентов, связывающих турбулентный перенос с градиентами скорости. Эти коэффициенты существенно зависят от расстояния до стенки и потому не являются фундаментальными характеристиками жидкости. Такого рода информация часто получается при изучении полностью развитого течения в трубе или некоторых простых пограничных слоев. [c.322]


    Осн. работы посвящены методам разделения смесей — газовой абсорбции, жидкостной экстракции и выпариванию. Осуществил (конец 1930-х) классические расчеты процессов массопередачи и захлебывания в абсорбционных башнях с насадкой. Изучил механизм массопередачи между двумя фазами. Провел одно из первых исследований вихревой диффузии в турбулентных газовых потоках, создал безнасадочные аппараты для изучения массопередачи в пограничных слоях (как для систем, в которых протекает хим, р-ция, так и для систем без нее). Экспериментально исследовал массо-передачу между поверхностью и сверхзвуковым потоком газа, а также процессы сублимации при очень низких давлениях. Создал основы для применения теории массопередачи в различных обл, хим, технологии, включая абсорбционное охлаждение. Участвовал в создании первых кондиционеров для охлаждения воздуха. Разработал пром. каталитические процессы, в которых реагенты диффундируют через пористые гранулы катализатора, находящегося в неподвижном слое, [c.502]

    Движение частиц, взвешенных в турбулентном однородном и изотропном потоке, при отсутствии их влияния на- структуру потока рассмотрено в теоретических работах В. Г. Левича. Весьма существенным для аэродинамических расчетов является вопрос о движении аэрозольных частиц в свободных струях. Ему посвящено небольшое количество экспериментальных исследований. Н. Кубыниным при изучении полей концентраций полидисперсной (10—300 мк) угольной пыли в струе воздуха, выпускаемой со скоростями и0 = 22 и 38 м/сек из трубки диаметром 5 см, одновременно определялись поля скоростей воздуха. Важным результатом является независимость профилей скоростей в струе при возрастании концентрации пыли от 0 до 1,15 Г/Г воздуха. Ввиду близкого значения коэффициентов турбулентной диффузии DT и турбулентной вязкости YT, естественным является сходство полей скоростей и концентраций. Практическая независимость профиля скоростей от концентрации пыли подтверждена также в работе [107]. [c.131]

    Джиллиленд и соавторы обрабатывали экспериментальные данные, используя обычный коэффициент свободной диффузии. Совпадение с опытными данными оказалось довольно хорошим. Однако если предположить, что происходит равномерное перемешивание, то трудно объяснить появление значительного количества гелия в точках над местом инжектирования. Это можно объяснить более удовлетворительно, если предположить, что восходящий турбулентный поток проходит но центральной части трубки, в то время как у стенок движение направлено вниз. Авторами сделано заключение, что скорость у стенок мсжет быть вдвое меньше средней скорости потока. Это наблюдение представляется весьма существенным н заслуживающим более подробного экспериментального изучения, поскольку при его подтверждении потребуются новые предположения о характере движения потока в промежутках между частицами, определяющем вид гидродинамических уравнений. [c.21]

    На частицы в неоднородном потоке действуют не только гравитационные, но и инерционные силы. Баланс этих сил и силы сопротивления среды определяет в условиях безвихревого течения траекторию частицы и вероятность ее захвата всплывающим пузырьком. В действительности гидродинамика акта значительно усложняется вследствие турбулизации пульпы всплывающими пузырьками и искажений, вносимых в поток самими частицами. Уравнения, предложенные для расчета вероятности столкновения частиц с пузырьками, можно разделить на две группы. К первой относятся формулы, основанные на концепции столкновения в результате турбулентных блужданий частицы и пузырька. Некоторые из них приведены в табл. 9.1 [формулы (1—5)]. В последние годы достигнут значительный прогресс в экспериментальном и теоретическом изучении турбулентного переноса и осаждения аэрозолей. Наряду с диффузионным был теоретически предсказан и практически подтвержден миграционный механизм осаждения. Он обусловлен пульсационной составляющей скорости потока. Теория миграционного механизма к настоящему времени разработана для осаждения частиц на стенки каналов. Применение ее для расчета турбулентной коагуляции помогло бы глубже раскрыть механизм субпроцессов и способствовать оптимизации гидродинамических условий. По данным Е. П. Медникова, на движение частицы в турбулентном потоке влияют продольная и пульсационная скорость среды поперечная турбулентная миграция крупномасштабное турбулентное перемешивание диффузия, вызванная мелкомасштабными пульсациями седиментация соударение со стенками и остаточная миграция. [c.197]

    Наибольшее число экспериментальных данных по изучению. кинетики экстракции накоплено с использованием методики осаждения или всплывания единичных капель. На основании анализа большого массива эиапериментальных данных и с привлечением модельных представлений О механизме массопередачи при обтекании капли сплошной фазой различными авторами (получены (полуэмпирические соотношения для определения коэффициентов массопередачи по сплошной и дисперсной кд фазам для капель, ведущих себя как твердые шары (молекулярная диффузия в капле) и для капель с внутренней циркуляцией (турбулентная диффузия в капле). Эти выражения общеизвестны, подробно (проанализированы в литературе [142, 260] и широко используются в практике расчетов процесса экстракции [274—277]. Наименее изученным остается вопрос [c.157]


    Другим интересным применением аналогии процессов диффузии и теплообмена является турбулентное горение, обусловленное диффузией кислорода к стенкам выгорающего канала или сгорающего тела. Изучение таких процессов весьма важно для техники горение пылевидного топлива в топках, выгорание стенок штрека в угольном массиве при подземной газификации углей и т. д. Естественно, что в этом направлении велось много экспериментальных исследований, к числу которых принадлежат работы Цухановой и Предводителева по горению угольных каналов при течении в них подогретого воздуха [29]. Попытаемся дать теоретическое толкование процесса горения угольного канала [30], определяемого диффузией кислорода к его стенкам. К нему применимо дифференциальное уравнение (29,6), если под у понимать концентрацию кислорода. [c.117]

    Свой анализ Васан и Уилки распространили на входной участок круглой трубы, где уменьшается с изменением длины канала. Используя ЭВМ, они получили решения уравнения нестационарной диффузии при значениях 8с, равных 1 и 2,5. Эти результаты показали, что значение St резко снижается вблизи входа в трубку, приближаясь примерно на расстоянии, равном восьми диаметрам трубы от входа, к значению, которое следует из уравнения (5.30) для полностью развитой турбулентности. При экспериментальном исследовании растворения бензойной кислоты Мейеринк и Фридлендер [111 ] нашли, что на расстоянии от входа, равном почти четырем диаметрам трубы, k . становится приблизительно постоянным. Для изученной ими системы S было равно 8800. [c.190]


Смотреть страницы где упоминается термин Экспериментальное изучение турбулентной Диффузии: [c.144]    [c.170]    [c.571]    [c.138]   
Смотреть главы в:

Массопередача -> Экспериментальное изучение турбулентной Диффузии




ПОИСК





Смотрите так же термины и статьи:

Диффузия турбулентная

Турбулентная диффузия и турбулентность



© 2025 chem21.info Реклама на сайте