Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

РАДИАЦИОННАЯ ХИМИЯ ВОДЫ Первичные продукты в воде

    К настоящему времени в области радиационной химии воды и водных растворов накоплен материал, охватывающий разнообразный круг вопросов. Выяснялись влияние плотности ионизации и мощности дозы на выходы радиолитических превращений в водных растворах, роль прямого действия излучения на растворенное вещество и возбужденных молекул воды в радиационных процессах, зависимость выходов продуктов радиолиза от концентрации раствора, изучалась природа первичных продуктов радиационно-химического разложения Воды и т. д. Большинство этих исследований основывалось на свободно-радикальной теории радиолиза воды. [c.10]


    Влияние радиации на ароматические соединения в разбавленных водных растворах изучается более 30 лет [22]. Разбавленный раствор бензола в воде предлагался для применения в дозиметре [211,212], а изучение действия излучения на разбавленные водные растворы замещенных ароматических веществ было начато после второй мировой войны Вайсом и его школой [22,213]. Однако ранние работы в этой области наталкивались на трудности, связанные с отсутствием достаточно чувствительных аналитических методов, позволяющих проводить реакции при оптимальных степенях радиолитического превращения, а также с отсутствием сведений об основных радиационно-химических процессах в воде. Факторами, которые в значительной мере стимулировали эти исследования и повысили надежность количественных работ по механизму радиационно-химических реакций, были следующие развитие теории радиационной химии воды, принятие концепции гидратированного электрона, установление радиационных выходов первичных продуктов радиолиза воды и применение импульсного радиолиза для определения абсолютных констант скорости реакций. [c.167]

    Импульсный радиолиз возник в радиационной химии, которая изучает химические и физико-химические превращения веществ под действием ионизирующего излучения. Его широко применяют для выяснения механизма радиолитических превращений, где с его помощью достигнуты крупные успехи установлено образование сольватированных электронов (ег) при радиолизе жидкостей, экспериментально обнаружено наличие шпор в облученных воде и этаноле, определены времена сольватации электронов в ряде жидкостей, идентифицированы другие первичные продукты радиолиза многих систем, исследована их реакционная способность и т. д. Кроме того, импульсный радиолиз часто используют для решения различных общехимических проблем. Этим методом получают и исследуют сольватированные электроны, неорганические и органические свободные радикалы, анион- и катион-радикалы, ионы металлов в необычных состояниях окисления, возбужденные молекулы и атомы, карбанионы и карбокатионы, ионные пары. Его применяют для изучения многих свойств указанных короткоживущих частиц реакционной способности, оптических спектров поглощения, коэффициентов диффузии, величин рК электролитической диссоциации и т. п. Нередко он находит применение для исследования особенностей химических и физико-химических процессов кинетики быстрых реакций, туннелирования электронов, переноса протонов, передачи энергии возбуждения, химической поляризации электронов и других. [c.123]


    Обзор Е. Фендлер и Дж. Фендлера вводит нас в интереснейшую область радиационной химии, тесно связанную с многими процессами в органической химии, и демонстрирует большие возможности метода для изучения механизма органических реакций. Метод импульсного радиолиза позволяет регистрировать образование различных, иногда крайне неустойчивых радикальных частиц и изучать их реакционную способность. Это прежде всего относится к изучению реакций первичных продуктов радиолиза воды —гидратированного электрона и гидроксильного радикала — с различными органическими соединениями. Определены константы скоростей реакций гидратированного электрона с ароматическими соединениями, алкилгалогенидами, ненасыщенными и карбонильными соединениями и т. д., в которых электрон выступает как простейший нуклеофил и восстанавливающий агент. Такие реакции могут служить прекрасными моделями для исследования окислительно-восстановительного механизма многих органических реакций, что имеет первостепенное значение именно на современном этапе развития представлений о механизмах многих процессов, ранее относимых к классическим 5к- и Зв-реакциям, для которых в настоящее время предполагается стадия одноэлектронного переноса. [c.6]

    В последние годы в радиационной химии достигнуты значительные успехи в выяснении природы и реакционной способности первичных химических продуктов облучения воды, спиртов, углеводородов и других органических соединений. Новые более чувствительные методы анализа позволяют количественно определять продукты реакций этих первичных частиц с различными веществами в растворе. Методом импульсного радиолиза найдены константы скоростей многих таких реакций. Установление того факта, что гидратированный электрон является по существу простейшим нуклеофилом, а гидроксильный радикал (первичный окислитель, получающийся при облучении воды) обладает электрофильными свойствами, открыло новые перспективы в исследованиях механизма этих реакций с органическими соединениями в растворе. Число подобных работ, выполняемых специалистами в области радиационной химии, все возрастает. Цель настоящего обзора — ближе познакомить химиков-органиков с большими возможностями радиационной химии как метода исследования механизма органических реакций и показать некоторые преимущества такого подхода. [c.119]

    Данные табл. 1 показывают, что изменение pH сильно влияет на химические реакции в системе. При низких значениях pH гидратированный электрон превращается в -Н [уравнение (2)], а при высоких значения pH протекает обратный процесс [уравнение (14)]. Естественно, что данные по константам скорости первичных химических продуктов радиолиза друг с другом и с другими веществами, находящимися в растворе, во многих случаях с успехом применяются для выяснения механизма химических реакций в растворе. Если, например, мы хотим исследовать только реакции гидратированного электрона с различными растворенными веществами, то лучше воспользоваться уравнением (23), обеспечив его применимость путем насыщения раствора водородом или, наоборот, вести реакцию в соответствии с уравнением (14), подщелачивая раствор. Систему можно также упростить таким образом, чтобы она содержала в качестве первичного продукта в основном гидратированные электроны — добавкой метилового спирта [уравнение (24)] при pH около 10 [уравнение (14)]. При исследовании реакций Н с растворенными веществами трижды дистиллированную воду следует подкислить [уравнение (2)] и насытить водородом [уравнение (23)]. Реакции гидроксильного радикала изучают в присутствии закиси азота, поскольку реакция, выражаемая уравнением (10), не только устраняет гидратированные электроны, но и приводит к увеличению вдвое количества гидроксильных радикалов в системе. Эта реакция, следовательно, чрезвычайно полезна при исследовании процессов гидроксилирования. Таким образом, подбирая наиболее благоприятные условия, можно существенно повысить целенаправленность экспериментов в области радиационной химии водных растворов. [c.133]

    Реакции, перечисленные в схеме 5, описывают радиационную химию водных растворов простых аминокислот. Для аминокислот с более длинной цепью и ароматических аминокислот, несомненно, существенное значение должны иметь и другие процессы, обусловленные атакой первичными продуктами радиолиза воды по раз- [c.186]

    Наряду с успехами количественных исследований интересные результаты были получены в 40-е гг. при анализе физико-химической природы процессов, происходящих в период между первичной абсорбцией энергии излучения и конечным биологическим эффектом. Было обнаружено зарождение в облучаемом растворе высокоактивных продуктов радиолиза воды — свободных радикалов, способных диффундировать на значительные расстояния и поражать биологические структуры. Радиационная биофизика начинает оперировать представлениями о непрямом действии излучения, опосредованном активными продуктами радиолиза воды были изучены физико-химические свойства перв1ичных продуктов ра-диолиза еоды> и характер их взаимодействия с макромолекулами клетки. Эти исследования были выполнены в содружестве со специалистами в области радиационной химии. Полученные данные породили гипотезы о возможности ослабления лучевого поражения за счет в1ведения в систему веществ — перехватчиков свободных радикалов, конкурирующих с биологическими структурами за продукты радиолиза воды. [c.10]



Смотреть страницы где упоминается термин РАДИАЦИОННАЯ ХИМИЯ ВОДЫ Первичные продукты в воде: [c.78]   
Смотреть главы в:

Радиационные эффекты в физике, химии и биологии -> РАДИАЦИОННАЯ ХИМИЯ ВОДЫ Первичные продукты в воде




ПОИСК





Смотрите так же термины и статьи:

Вода радиационная химия

Радиационная химия



© 2024 chem21.info Реклама на сайте