Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Простейшие из существующих организмов

    Реакции гидролиза, т. е. расщепления органических высокомолекулярных соединений действием воды, имеют большое биологическое и техническое значение. Путем гидролиза происходит распад белковых веществ, крахмала, гликогена, клетчатки, жиров, восков, глюкозидов и тому подобных веществ, причем образуются более простые низкомолекулярные соединения. Реакции гидролиза противоположны по направлению реакциям межмолекулярной дегидратации. В животных и растительных организмах между этими процессами существует биологическое равновесие. В организмах путем дегидратаций происходит образование полисахаридов, белков, жиров и других сложных соединений. Эти эндотермические по своему характеру процессы осуществляются при участии солнечной энергии, которая таким образом вовлекается в биосферу земли. Поэтому сложные химические вещества растений являются как бы аккумуляторами солнечного тепла. [c.534]


    Целлюлозу не может переваривать ни одно существо, видимое невооруженным глазом. Однако это оказывается под силу некоторым одноклеточным микроскопическим организмам. Именно благодаря им термиты могут питаться древесиной живущие в кишечнике термитов простейшие организмы гидролизуют целлюлозу, поедают часть образующейся при этом глюкозы, а все остальное достается термиту. Без этих простейших организмов термиты скоро умерли бы от голода.  [c.149]

Рисунок Леонардо да Винчи из рукописи Пропорции человека . Тело взрослого человека состоит приблизительно из 101 клеток, каждая из которых содержит набор биомолекул, присутствующих в определенной пропорции, и имеет специфическую ультраструктуру. Из клеток организуются ткани, из тканей - органы, а из органов-системы органов биохимическая активность каждой из систем великолепно координируется в рамках целостного организма, который не просто существует и двигается, но мыслит и творит. Рисунок Леонардо да Винчи из рукописи Пропорции человека . <a href="/info/614192">Тело взрослого человека</a> состоит приблизительно из 101 клеток, каждая из которых содержит набор биомолекул, присутствующих в <a href="/info/1081236">определенной пропорции</a>, и имеет специфическую ультраструктуру. Из клеток организуются ткани, из тканей - органы, а из <a href="/info/1283894">органов-системы органов</a> <a href="/info/521494">биохимическая активность</a> каждой из систем великолепно координируется в рамках <a href="/info/1416677">целостного организма</a>, который не просто существует и двигается, но мыслит и творит.
    Главным природным источником энергии, практически в обозримое время, на нашей планете является Солнце. На Земле существуют организмы, способные поглощать кванты солнечной энергии и с ее помощью осуществлять процесс синтеза глюкозы из простейших неорганических веществ, которая служит основой для биосинтеза разнообразных органических соединений. Этот сложный процесс называется фотосинтезом. Именно этому процессу Земля обязана своим зеленым покровом. Все растения Земли осуществляют фотосинтез и создают условия для жизни всего животного мира и человека. Возникающий при фотосинтезе свободный кислород является единственным источником кислорода на нашей планете. Помимо зеленых растений способностью улавливать кванты солнечного света обладают некоторые виды водорослей и бактерий. [c.181]

    Человеческий организм не может не только расти и развиваться, но и просто существовать без притока органических веществ. В отличие от растений и подобно животным, он не может сам создавать органические соединения из неорганического сырья. [c.298]

    Патогенные микроорганизмы вызывают инфекционные заболевания животных и человека. Они могут относиться к любой из групп микроорганизмов бактериям, актиномицетам, грибам, вирусам и простейшим. Патогенными организмами могут также являться различные гельминты. Большинство патогенных организмов мезофильно, они предпочитают температуры ниже 40 °С, так как адаптированы к температуре тела человека и животных. Большинство из них погибает, если находится достаточно длительное время при более высоких температурах (табл. 8.2). Однако существуют патогенные бактерии, образующие высокоустойчивые эндоспоры, которые выдерживают большое нагревание и высушивание, а затем пролиферируют, когда условия окружающей среды становятся подходящими для этого. [c.254]


    А. ПРОСТЕЙШИЕ ИЗ СУЩЕСТВУЮЩИХ ОРГАНИЗМОВ [c.74]

    Проводя экстраполяцию еще далее в глубь времен, мы в конце концов можем представить себе некоторый период, когда существовало лишь небольшое число видов относительно просто устроенных организмов. Дальнейшая экстраполяция во времени приведет нас, по-видимому, к такой стадии, на которой существовала всего одна или самое большее несколько первичных популяций, вероятно, сходных морфологически с простейшими представителями современных бактерий и сине-зеленых водорослей, из которых и возникли все остальные виды организмов (как растения, так и животные). Попытка такой экстраполяции во времени схематически представлена на фиг. 2. [c.15]

    В случае одноклеточных организмов, например бактерий и простейших, существует сильное селективное давление, заставляющее каждую отдельную клетку расти и делиться как можно быстрее. Поэтому темп клеточного деления лимитируется обычно лишь скоростью поступления в клетку питательных веществ и скоростью их использования. Совершенно иначе обстоит дело у многоклеточных организмов. Различные типы клеток по-разному (часто в очень небольшой мере) используют свои возможности быстрого деления, в результате чего количество клеток каждого типа остается на уровне, оптимальном для организма в целом. Это понятно в данном случае важно выживание всего организма, а не отдельных клеток. В результате все 10 клеток человеческого тела делятся с разной скоростью. Некоторые клетки, такие как нейроны, эритроциты и скелетные мышечные волокна, в зрелом состоянии не делятся вовсе. Другие клетки, например выстилающие поверхность тела и внутренние полости (эпителиальные клетки кишечника, легких, кожи), делятся быстро и непрерывно на протяжении всей жизни организма. Некоторые из этих клеток проходят полный цикл деления всего за 8 ч. Однако большинство животных клеток занимают промежуточное положение - они могут делиться, но делают это редко. Наблюдаемая длительность клеточного цикла (время генерации) составляет для разных клеток от 8 ч до 100 дней и более. [c.141]

    Для выделения кислорода путем расщепления Н2О до О2 в клетках должна была возникнуть другая система фотосинтеза (гл. 13). Простейшими выделяющими кислород организмами, существующими в настоящее время, являются сине-зеленые водоросли (цианобактерии) [9]. Некоторые из этих простейших растений — одноклеточные по структу- [c.25]

    Тут надо иметь в виду, что существуют организмы одноклеточные и многоклеточные. В первом случае все просто имеются хорошо отработанные методы введения рекомбинантных молекул ДНК в клетки микроорганизмов. Если сконструированная плазмида способна к самовоспроизведению, то она будет размножаться внутри клетки. В свою очередь сами клетки реципиентного организма быстро делятся вместе с привнесенными в них плазмидами. Так осуществляется клонирование генов в микроорганизмах. Если стоит задача получить генно-инженерный микроорганизм, то добиваются, чтобы привнесенная в клетку генетическая конструкция включилась (устойчиво интегрировалась) в хромосому реципиентного организма. [c.26]

    История металлопорфириновых комплексов на этом еще не заканчивается. К знаменитому закону Паркинсона можно было бы добавить еще один подпункт организмы развиваются, чтобы приспособиться к имеющимся источникам пищи. Когда появились новые источники энергии, стали развиваться многоклеточные организмы. Но при этом возникла новая проблема, связанная уже не с получением пищи или кислорода, а с транспортировкой кислорода в надлежащее место организма. Малые организмы могли обходиться просто диффузией газов через содержащиеся в них жидкости, но этого недостаточно для многоклеточных существ. Так перед эволюцией возникла очередная преграда. [c.260]

    Что же заставило атмосферу измениться столь существенным образом По-видимому, перестройка явилась побочным следствием появления нового способа запасания энергии, фотосинтеза, который давал его обладателям огромное преимущество над простыми ферментативными поглотителями энергии. Организмы, в которых развилось это новое свойство, могли использовать энергию солнечного света для синтеза своих собственных энергоемких молекул и уже не зависеть от того, что находится среди их окружения. Они стали предшественниками всех зеленых растений. Сегодня все живые организмы можно подразделить по метаболизму на две категории те, которые способны изготовлять свою собственную пищу при помощи солнечного света, и те, которые не имеют такой возможности. Поскольку организмы второй категории существуют за счет поедаемых ими организмов первой категории, накопление энергии посредством фотосинтеза является источником движущей силы для всего живущего на земле. [c.334]

    В отличие от пожаров и взрывов различных типов, имеющих много сходных черт, токсические выбросы сильно различаются между собой. Существует несколько путей воздействия на человеческий организм различных токсичных агентов, которые и свою очередь сильно отличаются друг от друга по степени токсичности. Для газов, например, летальная доза не является простым произведением концентрации токсичного вещества на время экспозиции, что подтверждается существованием предельно допустимой концентрации, воздействие которой в течение сколь угодно длительного промежутка времени не причиняет вреда человеку. [c.582]


    Все животные и растительные ткани состоят из различных химических соединений белков, углеводов, жиров и витаминов. И хотя все эти вещества необходимы для нормального развития организма, наибольшее значение имеют белки. Именно они служат той основной материей, из которой состоят все части отдельной клетки и целого организма. Белки являются высшей ступенью развития материи и с ними неразрывно связаны все неисчислимо многообразные проявления жизни, начиная с простейших функций самых примитивных существ и кончая сложнейшими функциями человеческой деятельности. [c.336]

    В живых организмах белки существуют не просто в виде длинных, гибких цепей более или менее хаотической формы. Белковые цепи закручиваются или распрямляются определенным образом, принимая специфические формы, необходимые для функционирования того или иного белка. Эта особенность структуры белков называется их вторичной структурой. Одной из важнейших и наиболее распространенных вторичных структур является ос-спираль, впервые установленная Лайнусом Полингом и Р. Б. Кори. Схематическое изображение спиральной структуры белка дано на [c.448]

    Наряду с закрытыми системами существуют открытые системы, в которых осуществляется обмен веществом с окружающей средой. Такие системы используют в некоторых случаях при проведении химических реакций. К ним относятся живые организмы, начиная с простейших одноклеточных. Общеизвестно, что неотъемлемой чертой живой материи является обмен веществ, т. е. поступление в организм продуктов питания, а в огромном числе случаев также и кислорода, и вывод из организма вредных продуктов метаболизма В открытых системах изменение количества молей каждого компонента складывается из двух частей — изменения в результате химического процесса и изменения при переносе вещества через границу системы. [c.167]

    Это тем более удивительно, что мир неживых систем и царство жизни связаны с постоянным обменом и один и тот же атом имеет шансы много раз стать составной частью и организма, и минерала, и земной атмосферы (В. И. Вернадский). Несомненно, однако, что устойчивость динамических организаций увеличивалась по мере их усложнения. Способность выдерживать физические и химические атаки внешней среды (например, повышение давления, колебания температуры, кислотности среды и т. п.) у живых существ выражена более отчетливо, чем у относительно просто построенных систем неживой природы. Такие процессы, как растворение, выветривание, эрозия, существенно изменяющие неживые системы, не оказывают разрушительного действия на живую материю во всем разнообразии ее форм. Химический состав и важнейшие последовательности реакций в живых системах мало изменялись на всем протяжении колоссального пути биологической эволюции. Это значит, что химическая эволюция в одних определенных условиях может завершиться примитивной стадией кристаллизации, а в других дать начало синтезу усложняющихся организаций, в которых механизмы, обеспечивающие устойчивость, строятся из одних и тех же химических фрагментов (белков, ферментов, липидов и др.), но выполняют все более тонкие и специфические функции. [c.7]

    Вместе с тем атомные соединения любой сложности с совершенной точностью воспроизводятся в организмах. Заметим также, что существуют способы выделения сложных атомных соединений, в частности индивидуальных белков. Мало того, осуществлен матричный синтез полипептидов. Как мы видели выше, атомные соединения довольно просто синтезируются путем химической сборки соответствующих структурных единиц на подходящих матрицах. Следовательно, не может быть и речи о принципиальной невос-производимости твердых атомных соединений, в том числе полимеров. Каждое из йих может быть получено надлежащим способом в чистом виде, но именно надлежащим, особым способом. В чем заключается особенность синтеза атомных твердых соединений  [c.241]

    Рассмотренная выше последовательность реакций не является единственным путем синтеза жирных кислот живыми организмами. Она просто лучше всего изучена и наиболее распространена. Существует и еще один путь сиитеза жирных кислот вне митохондрий. [c.139]

    Между Г. и признаком организма не существует простого соотношения. Все сложные признаки (напр., способность слышать) контролируются многими Г. Вместе с тем один Г. способен оказывать влияние на развитие сразу неск. признаков. [c.517]

    Большое значение в разнообразных процессах обмена в-в имеет ферментативное Д. Существует два типа подобных р-ций простое Д. (обратимая р-ция) и окислительное Д., в к-ром происходит сначала Д., а затем дегидрирование субстрата. По последнему типу в организме животных и растений осуществляется ферментативное Д. пировиноградной и а-кетоглутаровой к-т-промежуточных продуктов распада углеводов, жиров и белков (см. Трикарбоновых кислот цикл). Широко распространено также ферментативное Д. аминокислот у бактерий и животных. [c.19]

    В окружающем нас мире мы повсюду встречаемся с растворами. Обычный в,оздух, причем не обязательно загрязненный, представляет собой по существу газообразный раствор азота, кислорода, аргона, диоксида углерода и небольших количеств других веществ. Столовый уксус — не что иное как разбавленный раствор уксусной кислоты в воде, а серебряные монеты — твердый раствор никеля и меди. Морская вода — это водный раствор целого ряда веществ, среди которых преобладают ионы Na , Mg- , СГ" и 804. В человеческом организме содержится множество различных растворов, начиная от простых растворов солей и кислот и кончая такими сложными дисперсиями, как кровь. [c.201]

    Для решения двух других важных проблем, по-видимому, потребуется значительно больше новых исследований. Первая из них состоит в том, чтобы выяснить, как in vitro происходит синтез клетки из неклеточного вещества вторая — каким образом клетки дифференцируются во время роста организма. Широко распространено мнение, что, когда эти процессы будут поняты, можно будет получить простейшие живые организмы в лаборатории из простых молекул без участия уже существующих организмов. Несомненно, это одна из наиболее захватывающих и оживленных областей исследования в науке, но в то же время это одна из наиболее сложных областей, требующая обширных знаний основ всех направлений науки и умения связать их между собой. Возможно, обсуждение более простых систем, к которым, по-видимому, приложимы те же идеи, поможет представить всю грандиозность этих проблем. [c.256]

    Отношение современной общественности к тестированию на мутагенность. В настоящее время мало что делается для получения оценок риска, вызванного химическими мутагенами. Существует однако растущая осведомленность, что химические вещества, еще ждущие практического применения, например фармацевтические препараты или пестициды, должны тестироваться на мутагенность. Эта проблема выглядит сложнее в случае химических веществ, уже используемых в течение длительного времени, однако проверка по крайней мере наиболее важных из этих соединений начала проводиться. Следовательно, имеется согласие в том, что химические вещества должны проверяться на мутагенность. Путаница возникает в связи с вопросом о том, как их надо проверять. Изложенные выше принципы, хотя фактически и не оспариваются, далеки от того, чтобы быть принятыми научным сообществом. Кроме того, принцип минимальной экстраполяции требует применения тест-систем in vivo с использованием млекопитающих. Такие системы имеются для всех типов мутаций, происходящих в половых клетках и для большинства соматических мутаций, но они обычно требуют больших затрат времени и больших навыков, чем методы с использованием простых тестерных организмов вроде бактерий, плодовых мушек или культур [c.275]

    Обращаясь к истоку жизни, когда, надо думать, все органические существа обладали простейшим строением, можно спросить, как могли возникнуть первые ступени подвипутости или дифференцировки частей М-р Херберт Спенсер, вероятно, ответил бы как только простой одноклеточный организм путем роста или деления превратился в многоклеточный или прикрепился к какому-либо субстрату, так тотчас же проявил свое действие сформулированный им, Спенсером, закон, что гомологичные единицы любого порядка дифференцируются тем более, чем разнообразнее становятся их отношения к действующим на них силам .Но так как мы не обладаем фактами, которые могли бы нами руководить, то умозрение по этому вопросу почти бесполезно. Было бы, однако, ошибкой предполагать, что не будет ни борьбы за существование, ни, следовательно, естественного отбора, пока не возникнет много форм вариации у одного вида, населяющего изолированную стацию, могут оказаться полезными, и, таким образом, вся масса особей может модифицироваться, или могут возникнуть две различные формы. Впрочем, как я уже заметил в конце своего Введения , никто не должен удивляться тому, что многое по отношению к происхождению видов остается еще невыясненным, если принять во внимание всю глубину нашего незнания в области взаимных отношений между обитателями земного шара в настоящее время, а тем более в прошлом. [c.113]

    В какой мере эти необычайные свойства динамических организаций зависят от их химического состава Такая зависимость, конечно, существует — ведь нельзя представить себе развитие жизни, если исходное вещество представляет собой, например, только водород или водород и кислород и т. д. Дж. Уорд рассмотрел вопрос о том, почему живое вещество базируется главным образом на элементах второго и третьего периодов системы Менделеева. Как известно, необходимых для жизни элементов всего 16 и все они имеют небольшую массу атома. Особую роль играют четыре элемента водород, кислород, азот и углерод (на них приходится 99% массы живых тканей организма), а так Же сера и фосфор. Атомы Н, О, N. С приобретают стабильные конфигурации, присоединяя 1, 2, 3 и 4 электрона — это обусловливает и разнообразие образуемых ими химических связей. Важно, что наряду с простыми указанные элементы способны образовать и кратные связи, а также длинные цепи. Сера и фосфор, имеющие З -орбитали, способны к образованию более четырех ковалентных связей, причем их прочность не слишком велика и допускает реакции обмена. Фосфорные соединения являются, акку улятора-ми энергии, и именно они играют важнейшую роль в передаче богатых макроэргических групп и сохранении запасов энер гии. [c.346]

    Отдел включает одноклеточные, колониальные и многоклеточные (нитчатые), от микроскопических до видимых простым глазом, организмы различной морфологической структуры. Колониальные формы существуют на протяжении всей жизни или на отдельных стадиях развития водоросли. Многоклеточные цианеи живут отдельными нитями или собраны в дернинки. Они имеют симметричные или асимметричные, простые или разветвленные трихомы (тела), интеркалярную или апикальную зоны роста. У ряда нитчатых цианей имеются специализированные клетки — гетероцисты с сильно утолщенными бесцветными двухслойными оболочками. Они принимают участие в размножении и процессе фиксации азота. [c.26]

    Насколько сейчас известно, наша планета образовалась приблизительно 4,6 миллиарда лет назад, а простейшие ферментирующие одноклеточные формы жизни существуют 3,5 миллиарда лет. Уже 3,1 миллиарда лет они могли бы использовать фотосинтез, но геологические данные об окислительном состоянии осадочных отложений железа указывают, что атмосфера приобрела окислительный характер лишь 1,8-1,4 миллиарда лет назад. Многоклеточные формы жизни, которые, по-видимому, зависели от изобилия энергии, возможного только при дыхании кислородом, появились приблизительно от 1000 до 700 миллионов лет назад, и именно в то время наметился путь дальнейшей эволюции высших организмов. Наиболее революционизирующим шагом, после зарождения самой жизни, было использование внепланетного источника энергии, Солнца. В конечном итоге это превратило жалкие ростки жизни, которые утилизировали случайно встречающиеся природные молекулы с большой свободной энергией, в огромную силу, способную преобразовать поверхность планеты и даже выйти за ее пределы. [c.337]

    Из второго закона термодинамики известно, что в изолированной системе происходят самопроизвольные процессы, возрастание энтропии. Это нетрудно понять, если рассматривать биосферу Земли, как многокомпонентную систему, и каждый ее вид (организм), как состояние этой системы. Тогда, в соответствии со вторым началом термодинамики, число микросостояний увеличивается. Иными словами, существует энтропия поликомпонентности (ЭПК), которая является одной из причин эволюции костного и живого вещества и Ифает созидающую роль. Система самопроизвольно стремится увеличить свою разносортность (усилить свое многообразие). Не исключено, что в планетарной биосфере и отдельных биоценозах ЭПК колеблется около постоянного значения и уничтожение высокоорганизованных компонентов. Например, уничтожение млекопитающих увеличит возникновение и рост микроорганизмов и низших существ. Примером является возникновение инфекционных заболеваний даже в благополучных государствах. Система продолжает увеличивать свою разносортность, но это уже происходит за счет повышения многообразия микроорганизмов и простейших форм. Это может вытеснить человека с лица Земли. К сожалению, существующие технологии в земледелии, промышленности и строительстве направлены на уничтожение естественных биосистем и популяций. Идеи, что техника спасет мир — иллюзорны. То, что принимается нами за сферу разума - ноосфера, на деле является техносферой, которая безнравственна, и, в конечном счете, способствует уничтожению цивилизации ее же руками. Мы подобны ослепшему гетевскому Фаусту, который думает, что строит прекрасный город, а на самом деле слуги дьявола - лемуры, копают ему могилу. Поэтому, проблемой самого пристального внимания госу- [c.54]

    До конца первых десятилетий XIX в, существовало представление, что соединения, образующиеся в растениях и животных, обязаны своим происхождением действию особой так называемой жизненной силы и что грубые и простые неорганические силы , обусловливающие превращения неорганической материи, в живом организме не играют никакой роли. Согласно этому представлению органические вещества тем и отличаются от неорганических, что их образование зависит отэто особенной жизненной силы поэтому получение их искусственным образом, при помощи методов, применяемых в неорганической химии, считалось невозможным. [c.2]

    Витаминами называют вещества, очень малые дозы которых, наряду с жирами, белками, углеводами и минеральными веществами, необходимы для нормального развития животного организма недостаток витаминов приводит к болезненным явлениям, так называемому авитаминозу. Одкако приведенное определение витаминов требует известного уточнения. Существует много веществ, без которых животный организм не может нормально развиваться среди них встречаются и такие вещества, которые требуются организму в небольших количествах, но которые все же не считаются витаминами, например триптофан или иод. Под витаминами подразу.меаают некоторые сравнительно неустойчивые органические соединения относительно сложного строения, безусловно необходимые животному организму. Животный организм часто неспособен синтезировать их из простых соединений они попадают в животный организм с растительной пищей или образуются в нем в результате превращений довольно сложных соединений растительного происхождения. [c.890]

    НОГО оружия. Распространяясь по пшцевой цепи (от растений к животным), они поступают с продуктами питания в организм человека и могуг накапливаться в таких количествах, которые способны нанести вред здоровью Наиболее опасны среди них Сз и I [179] Благодаря химическому с. одству с кальцием легко проникает в костную ткань позвоночных, тогда как накашгавается в мьпицах, замещая ка шй, а 1 - в щитовидной железе человека Наряду с ними при одинаковом уровне загрязнения опасны также реже встречающиеся изотопы простых элементов ( С, Са, 8, Н, К), которые являются основными составляющими живых существ. Имеется классификация радионуклидов по степени биологического воздействия (табл 2 19) [180] [c.98]

    Эту группу организмов составляют бактерии, актиномицеты — нитчатые микроорганизмы, бесхлорофилльные растения — грибы, хлорофиллсодержащие растения — водоросли, простейшие и ульт-рамикробы — особый класс существ, более просто организованных, чем бактерии, и более мелких, невидимых в микроскоп. [c.239]

    Современные океаны и моря содержат громадные скопления подобных простейших организмов в верхних слоях воды до глубины примерно 200 м (т. н. планктон) ив придонной области не очень глубоких мест (т. н. бентос). Общее наличное Рис. х-44. Схема неф- количество планктона оценивается в 36 млрд. т живого веса, а тяногоместорождевня. бентоса — в 8 млрд. т. Будучи в конечном счете, основой питания всех более сложных морских организмов, планктон и бентос вряд ли накапливаются теперь в форме своих останков. Иначе складывалось положение в минувшие эпохи, когда условия для развития простейших организмов были более благоприятны, а потребителей планктона и бентоса существовало значительно меньше. [c.578]

    Конечно, справедливо утверждение, что во многих случаях сложность и нетривиальность структур природных соединений воспринимаются сами по себе как вызов созидательным способностям Человека и, конечно, для ученого невозможно не принять этот вызов. Почему Вам столь необходимо взойти на Эверест — спросили Мэллори, легендарного английского альпиниста 20-х годов. Потому, что он есть — был ответ. Однако помимо годоб-ного, может быть несколько романтического, стимула, существует также еще вполне конкретная мотивация необходимости синтеза природных соединений. Дело в том, что живая Природа ничего не делает просто так, для забавы — ведь биосинтез всегда сопряжен со значительньгми энергетическими затратами и, если его результатом является получение абсолютно бесполезного соединения, то организм-продуцент не имеет шансов выжить в процес- [c.18]

    Хотя для получения катионов благородных металлов необходимы очень сильные окислители, не следует пренебрегать тем обстоятельством, что они способны самопроизвольно образовывать в водной среде ограниченное количество ионов. Например, небольшая растворимость серебра в воде проявляется в поразительном явлении, называемом олигодииамическим эффектом и связанным с воздействием твердого металла на микроорганизмы. Простые катионы се-зебра А чрезвычайно токсичны для этих организмов. VIнoгиe типы микроорганизмов вообще не в состоянии существовать на поверхности твердого серебра. Очевидно, оли-годинамический эффект обусловлен образованием небольшого, но вполне достаточного количества ионов серебра на поверхности твердого металла, поэтому с точки зрения гигиены серебряная посуда обладает большими достоинствами. И, видимо, не так далека от истины английская поговорка, что хорошо тому, кто родился с серебряной ложкой во рту. [c.351]

    Диапазон изменений нуклеотидного состава ДНК на удивление широк. Суммарное процентное содержание цитозина и гуанина (G -содержа-ние) в различных бактериях меняется от 22 до 74%. (G -содержание в ДНК Е. oli равно 51,7%). Для эукариот этот диапазон более узок (от 28 до 58%). Тот факт, что у бактериальных ДНК нуклеотидный состав меняется в гораздо более широких пределах, чем у высших организмов, удивления не вызывает. Прокариоты существуют на Земле почти столько же миллионов лет, сколько и мы. Но из-за их более простой структуры и высокой скорости деления природа совершила над их генетическим материалом значительно больше экспериментов и внесла в него значительно больше изменений, чем в наш. [c.138]

    В клетках пантотеновая кислота входит в состав молекулы СоА. Реакционноспособным центром последнего (рис. 8-1) служит —5Н-группа, а Р-аланиновая часть молекулы пантотеновой кислоты входит в гибкую ножку, к которой прикреплена — Н-группа. Остается загадкой, почему так существенна для жизни пантоевая кислота — маленькая молекула странной формы, которую не может синтезировать организм человека. Некоторые ферменты действуют на простые производные СоА, лишенные как нуклеотидного компонента, так и пантоевой кислоты. Однако в нашем организме должны существовать какие-то ферменты, зависящие от уникальной структуры пантоевой кислоты. Возможно, во взаимодействии с ферментом каким-то образом участвует гидроксильная группа. Возможно также, что две метильные группы принимают участие в образовании триалкильного замка (гл, 6, разд. Д, 7), являющегося частью очень сложного колена или плеча для —5Н-несущей ножки . [c.193]


Смотреть страницы где упоминается термин Простейшие из существующих организмов: [c.29]    [c.256]    [c.346]    [c.42]    [c.365]    [c.20]    [c.376]    [c.43]    [c.345]   
Смотреть главы в:

Эволюция биоэнергетических процессов -> Простейшие из существующих организмов

Эволюция биоэнергетических процессов -> Простейшие из существующих организмов




ПОИСК







© 2025 chem21.info Реклама на сайте