Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вода радиационная химия

    Радиационно-химические реакции. Достаточно сильное воздействие на молекулы реагирующих веществ оказывают ионизирующие излучения (7-излучение, поток нейтронов и т. д.), их химическое действие изучается в радиационной химии. На базе исследований радиационно-химических реакций возникла радиационно-химическая технология, достоинством которой является высокая скорость реакций при сравнительно низких давлениях и температурах, возможность получения материалов высокой чистоты и др. К наиболее важным процессам радиационнохимической технологии относятся полимеризация мономеров, вулканизация каучука без серы, сшивание полимеров, улучшение свойств полупроводников, очистка вредных газовых выбросов и сточных вод и др. [c.121]


    РАДИАЦИОННАЯ ХИМИЯ ВОДЫ И ВОДНЫХ РАСТВОРОВ [c.72]

    Химическое действие радиоактивных излучений. Исследованием химических изменений, возникающих в веществе под действием ядерных излучений, занимается радиационная химия. Вскоре после работ Беккереля была обнаружена способность излучений радия разлагать воду на водород и кислород. В последующие годы расширились работы, посвященные действию излучений радиоактивных элементов на различные вещества. Было установлено, что под действием излучений возникают ионы и радикалы. Часто наблюдается протекание цепных реакций. Современный этап радиационной химии связан с появлением мощных источников ядерных излучений. Решение прикладных задач по эксплуатации ядерных [c.407]

    Ряд физических следствий прохождения излучения через вещество был рассмотрен в гл, 3. К сказанному там следует добавить, что в радиационной химии линейную передачу энергии (ЛПЭ) (см. стр. 125) измеряют количеством электронвольт, приходящихся на 1 А. Величина ЛПЭ, например, в воде изменяется в весьма широком диапазоне от 0,02 (7-излучение Со ) до 9 эВ/А (а-частицы, испускаемые естественными тяжелыми радиоактивными элементами). [c.196]

    Вводные положения (195). Стадии и типы радиационно-химических процессов (197). Радиационная химия газов (199). Радиационная химия воды (201). Радиолиз органических соединений (204). Радиационное окисление органических соединений (206). Радиолиз водных растворов органических соединений (208). Радиационная полимеризация [c.239]

    Радиационная химия начала развиваться два десятилетия тому назад. Эксплуатация ядерных реакторов позволила решить ряд практических задач и сделать открытия крупного (научного значения. Выяснен радикальный механизм радиолиза воды, открыто радиационное сшивание полимеров. [c.270]

    Импульсный радиолиз возник в радиационной химии, которая изучает химические и физико-химические превращения веществ под действием ионизирующего излучения. Его широко применяют для выяснения механизма радиолитических превращений, где с его помощью достигнуты крупные успехи установлено образование сольватированных электронов (ег) при радиолизе жидкостей, экспериментально обнаружено наличие шпор в облученных воде и этаноле, определены времена сольватации электронов в ряде жидкостей, идентифицированы другие первичные продукты радиолиза многих систем, исследована их реакционная способность и т. д. Кроме того, импульсный радиолиз часто используют для решения различных общехимических проблем. Этим методом получают и исследуют сольватированные электроны, неорганические и органические свободные радикалы, анион- и катион-радикалы, ионы металлов в необычных состояниях окисления, возбужденные молекулы и атомы, карбанионы и карбокатионы, ионные пары. Его применяют для изучения многих свойств указанных короткоживущих частиц реакционной способности, оптических спектров поглощения, коэффициентов диффузии, величин рК электролитической диссоциации и т. п. Нередко он находит применение для исследования особенностей химических и физико-химических процессов кинетики быстрых реакций, туннелирования электронов, переноса протонов, передачи энергии возбуждения, химической поляризации электронов и других. [c.123]


    Хотя химические методы дозиметрии и уступают другим методам в отношении чувствительности к действию радиации, они находят щирокое применение при решении многих важных практических задач. С их помощью можно, например, определять все уровни доз, с которыми приходится иметь дело в радиационной химии. Из большого числа предложенных дозиметрических систем наиболее важной и чаще всего используемой является ферросульфатная система. Простота приготовления растворов, возможность использования реактивов и воды обычной степени чистоты, независимость выхода радиационное [c.384]

    Для радиационной химии весьма большое значение имеет процесс упругого рассеяния на ядрах атомов водорода. Это обусловлено следующими обстоятельствами 1) во многих системах (вода и водные растворы, полимеры, углеводороды и др.) значительную часть ядер составляют протоны (в воде их, например, около 2/з) 2) передача энергии протону максимальна по сравнению с другими ядрами и 3) сечение процесса рассеяния на ядрах водорода больше, чем на других ядрах. Так, максимальная энергия, которая может быть передана нейтроном ядру с атомным весом А, равна  [c.20]

    См. лит. при ст. Радиационная химия, Радшгционно-химиче ская технология. Радиоактивность. А. X. Брегер. ИОНИТЫ (ионообменники, ионообменные сорбенты), вещества, способные к ионному обмену при контакте с р-рами электролитов. Большинство И.— твердые, нерастворимые, ограниченно набухающие в-ва. Состоят из каркаса (матрицы), несущего положит, или отрицат. заряд, и подвижных противоионов, к-рые компенсируют своими зарядами заряд каркаса и стехиометрически обмениваются на противоио-ны р-ра электролита. По знаку заряда обменивающихся ионов И. делят на катиониты, аниониты и амфолиты, по хим. природе каркаса — на неорг., орг. и минер.-органические. Неорг. и орг. И. могут быть природными (напр., цеолиты, целлюлоза, древесина, торф) и синтетическими (силикагель, АЬОз, сульфоуголь и наиб, важные — ионообменные смолы). Минер.-орг. состоят из орг. полиэлектролита на минер, носителе или неорг. И., диспергированного в полимерном связующем. Выпускаются в виде зерен сферич. или неправильной формы, порошков, волокон, тканей, паст и изделий (напр., мембран ионитовых). Примен. для очистки, разделения и концентрирования в-в из водных, орг. и газообразных сред, напр, для очистки сточных вод, лек. ср-в, сахара, выделения ценных металлов, при водоподго-товке носители в хроматографии гетерог. катализаторы. [c.224]

    Наиболее интенсивно радиационная химия воды и водных растворов стала развиваться после второй мировой войны. В этот период исследования в рассматриваемой области охватывают разнообразный круг вопросов. Выяснялось влияние плотности ионизации и мощности дозы на выходы радиолитических превращений в водных растворах, роль прямого действия излучения на растворенное вещество и возбужденных молекул воды в радиационных процессах, зависимость выходов продуктов радиолиза от концентрации раствора, проводилось изучение радиационно-электрохимических процессов и коррозионного поведения металлов в водных растворах при облучении и т. д. Основой этих исследований явилась радикальная теория радиолиза воды. [c.73]

    В радиационную химию уравнение материального баланса радиолиза воды было введено А. Алленом [36, 37]. [c.79]

    Существенным недостатком упомянутых работ является то, что их авторы не уделяют внимания протекающим в золях радиационно-хими-ческим процессам. При действии излучения на гидрозоли с низкой концентрацией твердой фазы подавляющая часть актов взаимодействия приходится на молекулы воды. Возникающие при этом в конечном результате [c.111]

    Прямое превращ. ядерной знергии в химическую может осуществляться в т. и. хемоядерных реакторах, в к-рых активная зона заполнена урансодёржащими металлич. волокнами или листами фольги толщиной 0,3—10 мкм. В-ва, транспортирующиеся между волокнами или листами фольги, вступают в хим. р-цию благодаря энергии излучения и отводят выделяющуюся тепловую энергию, к рая м. б. преобразована в электрическую или использована непосредственно. Возможно применение газообразного или жидкого горючего реагенты в этих случаях смешиваются с горючим. Продукты хим. р-ции выводятся из реактора через спец. устр-ва. Вследствие сложности отделения продуктов хим. р-ции от радиоакт. осколков деления и искусств, радиоакт. элементов, образующихся при поглощении нейтронов реагирующими в-вами, промышл. хемоядерные реакторы пока не построены. В лаб. масштабах изучены фиксация N2 из воздуха, получ. Нг при радиолизе воды, синтезы озона и гидразина и др. Радиационно-хим. выход для таких реакторов, т. е. число молекул, образующихся при поглощении энергии 100 МэВ, составляет от 2 до 30. [c.725]

    В книге рассматриваются основные положения радиационной химии воды и водных растворов, описываются методы генерации и дозиметрии импульсного и прерывистого излучений, подробно излагаются способы идентификации короткоживущих продуктов радиолиза и определения констант скорости реакций с их участием, а также обсуждаются перспективы использования импульсного излучения в радиационной химии. [c.3]


    Таковы лишь некоторые начальные аспекты свободно-радикальной теории радиолиза. Подробное изложение проблемы содержится в работах А.К.Пикаева [17, который отмечает большое значение процессов в шпорах , называя их святая святых радиационной химии. В случае облучения воды электронами с энергией 1-2 МэВ, имеющих величину линейной передачи энергии 0,2 эВ/нм, энергия передается воде порциями в среднем по 100 эВ и среднее расстояние между отдельными точками, где происходят акты ионизации и возбуждения, составляет 500 нм. Радикалы Н и ОН, образующиеся в пределах небольшой шпоры , рекомбинируют или диффундируют в объем раствора, где и вступают в реакции с растворенным веществом. Поскольку расстояние между этими шпорами велико, вероятность внутритре-кового перекрытия таких расширяющихся шпор мала. [c.194]

    Еще более сильное действие на молекулы оказывают ядерные излучения (у-излучение, протоны, нейтроны и др.) и рентгеновское излучение. Раздел химии, занимающийся вопросами химического действия этих излучений, называется радиационной химией. В отличие от нее радиохимией называют химию радиоактивных элементов, в частности химию меченых атомов . Радиационная химия развивается в связи с развитием ядернсй физико-химии и ядерной энергетики. Атомные реакторы, ускорители частиц, радиоактивные изотопы дают разнообразные очень мощные потоки частиц, которыми все больше начинают пользоваться для осуществления химических реакций. Эти излучения рвут связи, выбивают отдельные атомы, порождают радикалы и ионы, а затем идут перегруппировки связей и возникают новые. Например, вместо двухстадийного обычного химического получения фенола из бензола можно получать это важнейшее вещество из бензола и воды в одностадийном процессе с использованием ядерных излучений. При этом из воды получаются радикалы ОН и Н и бензол далее реагирует по схеме [c.57]

    Изучение Г. радиоактивных процессов в земной коре и изотопов привело к разработке абс. шкалы геол. времени. Установлены возраст Земли как планеты (ок. 4,5 млрд. летХ длительность отдельных геол. эр и периодов, отдельных событий ранней человеческой истории. Определение содержания радио- и нерадиоактивных изотопов в горных породах, рудах, минералах, водах, живых организмах, атмосфере позволило решить мн. задачи наук о Земле (генезис руд, почвоведение, морская геология и др.). Эти вопросы составляют содержание Г. изотопов. Радиационно-хим. явления наблюдаются во многих минералах. С воздействием гл. обр. излучений и и 1Ъ связывают частичную потерю кристаллич. структуры у циркона, торита, браннерита и др. радиоактивных минералов. [c.522]

    Радиационная химия — область химической науки, которая изучает химические превращения под действием ионизирующих излучений а-, (3-частиц, v-иэлучения, нейтронов, протонов и других частиц. Под воздействием излучений протекают многие химические реакции, напр, окисление, полимеризация, синтез, радиолиз (воды) и др. [c.109]

    Данные ПМР показали, что количество незамещенных положений в ионите, у которых могут образоваться ионогенные группы, составляет 70 % от первоначального количества. С учетом максимального замещения ионогенными группами и пространственной доступности оставшихся положений (принято 0,5) возможный прирост должен составлять 25-30 %. Экспериментальные данные показывают, что такой прирост возможен. С увеличением числа свободных центров при уменьшении замещения в 2 раза обменная емкость (в воде) увеличивается в 2 раза. При облучении в 0,1 н. растворе NaOH прирост СОЕ составил 11 %, тогда как в 0,1 н. НС1 при той же дозе — 50%. Таким образом, изменение величины pH среды приводит к изменению параметров радиационно-хими-ческих превращений, видимо, в первую очередь механизма радиолиза воды. При облучении катионитов в воде, вероятно, не исключена возможность самокатализа ионогенными группами. При облучении в щелочном растворе происходит стабилизация всей системы. Значительная часть фосфорнокислых групп переходит в Na-соль, нейтрализуя щелочь. [c.154]

    Их МЫ рассмотрим вкратце в гл. VI (стр. 156 и сл.). Дейнтон [23] дал обзор состояния вопроса вплоть до 1948 г,, уделив особое внимание воде. Харт [24] и Виллард [25] опубликовали обзоры, содержащие более поздние материалы. Обзор по радиационной химии органических соединений опубликован Коллин-соном и Сваллоу [26]. Содержательный обзор с обсуждением дан Бартоном [27]. [c.60]

    Исследовались ионно-молекулярные реакции в системах метан, метанол, вода, аргон и криптон с иодом [237], галогенными солями щелочных металлов [354], азотом, кислородом, окисью углерода, двуокисью серы, двуокисью углерода, карбонилсульфидом и сероуглеродом [89] натрий, калий, рубидий и цезий с водородом, дейтерием и кислородом [79]. Исследовалось взаимодействие атомов аргона с одно- и двузарядным неоном и аргоном [5] водород, кислород, вода и их бинарные смеси [144] триэтилалюминий и октен-1 [387] атомы азота с озоном, молекулярные ионы водорода с водородом, азотом гелием, аргоном и криптоном [391]. Гиз и Майер [210] исследовали ионно молекулярные реакции в приборе, в котором первичный пучок пересекал продольно ионизационную камеру. Ирза и Фридман [269] изучали диссоциацию НВ", вызванную столкновением. Филд [173] описал ионно-молекулярные реакции высшего порядка и получил масс-спектр этилена при сверхвысоком давлении. Бейнон, Лестер и Сондерс [45] исследовали ионно-молекулярные реакции разнообразных органических кислород- и азотсодержащих соединений они установили, что наиболее значительными пиками в их масс-спектрах являются пики с массой на единицу больше молекулярной. Беккей [34] исследовал ассоциацию воды и ионно-молекулярные реакции, используя ионный источник с ионизацией на острие. Хенглейн и Мучини [238] проанализировали значение ионно-молекулярных реакций в радиационной химии. [c.664]

    Значительная часть ранее полученных знаний в области этих процессов связана с работами Фрике и его сотрудников [82]. Современное состояние этого вопроса можно уяснить из ряда ежегодных обзоров [83]. В недавней дискуссии Фарадеевского общества [84] по радиационной химии также охвачен ряд сообщений о роли перекиси водорода. В выступлениях на дискуссии содержится много ценного материала. Другие работы последнего времени, посвященные образованию перекиси водорода при бомбардировке воды, принадлежат Аллену и его сотрудникам [85], Дейнтону [86], Кренцу [87] и группе французских авторов [88—93]. Твердо установлено, что бомбардировка воды ионизирующими излучениями любого типа приводит к образованию газообразных водорода и кислорода, а также перекиси водорода. Обычно принимается, что газообразный водород и перекись являются первыми из образующихся молекулярных продуктов, газообразный же кислород получается уже за счет вторичных реакций свободных радикалов с перекисью водорода. Так, Аллен [85] показал, что при применении быстрых электронов или излучений атомного реактора (быстрые нейтроны вместе с у-лучами) и очень малых экспозициях образуется не кислород, а перекись водорода кислород появляется только при более длительном облучении. Однако в одном из сообще- [c.60]

    В настоящем обсуждении этот предмет, известный под названием радиационной химии, подробно рассматриваться не будет. В основном внимание будет сосредоточено на обладающих большой энергией и обычно радиоактивных атомах, которые возникают при ядерных реакциях, протекающих с изменением заряда ядра. Несмотря на то, что эти частицы имеют большую энергию, они в большинстве случаев являются в основном не ионизирующими, так как благодаря своей большой массе они имеют небольшую скорость. Мы будем рассматривать их как частицы, которые при столкновениях передают свою энергию другим атомам, ионам и молекулам в системе и достигают в конце концов некоторого стабильного или метастабильного состояния. Наша задача заключается в том, чтобы предсказывать и объяснять эти конечные состояния. Эта точка зрения основывается на принципе, который нуждается в дальнейшем пояснении, а именно, что вероятность диссоциации любой определенной молекулы в результате ионизации вообще очень мала. Предположим, например, что процесс поглощения рентгеновских лучей каким-то образом обусловливал бы радиоактивность атома кислорода в молекуле воды каждый раз, когда происходит выбивание электрона. В этом случае сформулированный выше принцип означает, что выделяющийся газообразный кислород не содержал бы почти весь радиоактивный кислород, а фактически мог бы содержать лишь немногим больше, чем можно ожидать при равномерном распределении его среди всех молекул воды, т. е. точно так же, как если бы процессы ионизациии появления радиоактивности были бынезависимы. [c.223]

    Современный этап радиационной химии начался лишь два десятилетия назад в связи с работами по использованию атомной энергии. Существенное значение приобрело изучение действия разных видов излучения на различные материалы, применяемые в атомной технике. Эксплуатация ядерных реакторов и переработка ядерного горючего выдвинули такие важные вопросы, как разложение воды, употребляемой в качестве замедлителя и охладителя, изменение химических свойств веществ и валентных состояний в высокоактивных растворах, участвующих в технологическом процессе выделения ядерного горючего. При решении этих практических проблем были сделаны открытия крупного научного значения, например, выя.снен радикальный механизм радиолиза воды [8, 9], открыто радиационное сшивание полимеров и т. д. [c.6]

    В радиационной химии значительное число работ носвящено изучению реакций, протекающих под действием ионизирующих излучений на воду и водные растворы. При изучении радиационно-химических процессов в таких системах центральное место занимает вопрос об эффективности реакций образования и распада продуктов радиолиза. Основными молекулярными продуктами радиолиза воды и водных растворов,как известно, являются водород и перекись водорода [1,2]. Естествошю,что исследование реакций образования этих продуктов и, в частности, перекиси водорода, представляет особый интерес, поскольку перекись водорода может оказывать влияние на ход радиационно-химических процессов. [c.49]

    Существование этих радикалов, впервые Д1остулированное в химии газовых реакций [И], совсем недавно доказано экспериментально масс-снектрометрическими исследованиями [12]. В радиационной химии водных растворов радикалу НОз приписывается важная роль, поскольку считается, что он должен возникать также и в воде, где облегчены условия передачи избытка энергии третьему телу, а этот радикал для своего образования требует очень небольшой энергии активации [13]. Таким образом, в присутствии молекулярного кислорода восстановительная часть продуктов радиолиза воды (атомы водорода) заменяется соответствующим количеством радикалов НОг, обладающих окислительными свойствами. Последпио проявляются, например, в случае окисления растворов двухвалентного железа. [c.88]

    Радиационная химия водных растворов. При большинстве радиационнохимических реакций, при которых реагирующие вещества находятся в разбавленных водных растворах, количество реагирующего, вещества не зависит от концентрации растворенного вещества [Р23, Р25, 02]. Этот факт согласуется с представлением, согласно которому энергия излучения поглощается водой с образованием атомов, радикалов и ионов, которые затем реагируют с растворенным веществом. Предполагается, что реагирующими частицами являются Н и ОН, хотя образующиеся в дальнейшем НО, и Н2О2 могут также реагировать с растворенным веществом [А24, W12, В58]. Н и ОН могут возникать из ионов, образующихся в воде при действии излучения или непосредственно из возбужденных молекул воды  [c.227]

    Д. внутренних источников включает расчеты и измерения дозы и установление предельнодопустимых концентраций при попадании радиоактивных веществ внутрь организма, исследование движения веществ в организме и законов их выведения. В радиационной химии рассчитывают выход химич. реакций в среде, содержащей радиоактивные вещества. Эти задачи приводят к необходимости измерений концентраций радиоактивных веществ в воздухе, воде, ра.зличных средах. [c.601]


Библиография для Вода радиационная химия: [c.201]    [c.347]    [c.379]    [c.353]    [c.87]    [c.229]   
Смотреть страницы где упоминается термин Вода радиационная химия: [c.534]    [c.115]    [c.67]    [c.572]    [c.534]    [c.725]    [c.322]    [c.78]    [c.339]    [c.385]    [c.65]   
Использование радиоактивности при химических исследованиях (1954) -- [ c.227 ]




ПОИСК





Смотрите так же термины и статьи:

Основные положения радиационной химии водыи водных пасткорон

Перспективы интенсификации исследований в области радиационной химии воды

РАДИАЦИОННАЯ ХИМИЯ ВОДЫ Первичные продукты в воде

Радиационная химия

Радиационная химия воды и водных растворов Краткий исторический очерк

Радиационная химия воды и водных систем



© 2025 chem21.info Реклама на сайте