Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Интерпретация карты электронной плотности

    РИС. 4-19 Д. Интерпретация карт электронной плотности, представленных на рис. 4-19, В и 4-19, Г. Фосфатные группы 2,3-дифосфоглицерата образуют ионные связи с остатками валинов-1 и гистидинов-2 и 143 обеих р-цепей и с остатком лизина-82 одной из цепей. Это связывание смещает А-спираль и остаток 6 в направлении Е-спира-лн, что приводит к появлению пар областей с увеличенной и уменьшенной электронной плотностью, обозначенных на рис. 4-19, Г Р1, р1 и Р2, р2 [74]. [c.312]


    Таким образом, для расчета и интерпретации карт электронной плотности белков необходимы другие данные. В связи с этим при интерпретации результирующих карт электронной плотности положение атомов может быть определено лишь приближенно. Основной проблемой анализа является определение фазы а кЫ). Эта проблема была впервые успешно решена [54] методом изоморфного замещения с применением солей тяжелых металлов. При [c.19]

    ИНТЕРПРЕТАЦИЯ КАРТЫ ЭЛЕКТРОННОЙ ПЛОТНОСТИ [c.396]

    УЧЕТ ЭНЕРГИИ БЕЛКОВЫХ КОНФОРМАЦИЙ ПРИ ИНТЕРПРЕТАЦИИ КАРТЫ ЭЛЕКТРОННОЙ ПЛОТНОСТИ [c.398]

    При анализе структуры малых молекул первичную карту электронной плотности получают при помощи прямых методов определения структуры или, например, методом Паттерсона, устанавливая положение нескольких наиболее тяжелых атомов в молекуле. Такая первичная карта Фурье обычно недостаточно ясна и может указывать максимумы электронной плотности только для некоторых атомов в молекуле. Положение этих атомов определяется при интерпретации первичной карты и используется для расчета набора фаз. Этот набор затем применяется для расчета карты электронной плотности с помощью наблюдаемых структурных амплитуд, в результате чего уточняются положения других атомов. Вклад этих атомов может быть затем использован для расчета улучшенного набора фаз, что приводит к более совершенной карте электронной плотности. Подобная процедура последовательно повторяется до тех пор, пока не будут определены все атомные параметры. Для уточнения фаз и расчета карт электронной плотности могут быть использованы альтернативные циклы. Поскольку в случае малых молекул число экспериментально наблюдаемых параметров (структурных амплитуд) велико по сравнению с числом переменных параметров, структура малых молекул определяется с высокой точностью. Белковые молекулы, однако, содержат, значительно большее число атомов. Поскольку каждый атом должен быть охарактеризован тремя параметрами, указывающими местоположение, и, как правило, шестью параметрами, определяющими его тепловые колебания, число независимо наблюдаемых рефлексов рентгеновских лучей обычно ненамного превосходит число переменных параметров. Кроме того, для уточнения кристаллографических параметров и согласования их с опытными данными методом наименьших квадратов необходимо гораздо большее число наблюдаемых структурных амплитуд. Более существенным оказывается, однако, то, что синтезы Паттерсона в случае нативных кристаллических белков не поддаются интерпретации, поскольку в элементарной ячейке содержится большое число атомов и прямые методы определения структуры для больших молекул недостаточно развиты. Следовательно, эти методы не могут быть использованы при определении фаз в случае кристаллических белков. [c.19]


    Интерпретация карт электронной плотности молекулы значительно облегчается при знании аминокислотной последовательности. Однако далеко не каждый Б. удается получить в кристаллич. состоянии. Необходимое условие кристаллизации-сохранение нативной конформации, к-рая часто реализуется лишь в условиях, приближенных к физиологическим. В частности. Б., входящие в состав нуклео-протеидных комплексов (рибосома, вирусы хорошо кристаллизуются только в составе таких комплексоа С помощью обычного рентгеновского излучения проводить анализ таких гигантских образований сложно. В этих случаях используют синхротронное рентгеновское излучение, интенсивность к-рого может быть на два порядка выше. Вследствие этого резко сокращается время эксперимента по регистрации дифракц. отражений, а также снижается кол-во исследуемого в-ва. Ряд мембранных Б. кристаллизуется в условиях нативного липидного окружения с образованием т. наз. двухмерных кристаллов, представляющих из себя регулярно упакованные молекулы Б. в бислойной липидной мембране. При изучении двухмерных кристаллов используют электронную микроскопию и электронографию. [c.252]

    ЭТОМ фазовые углы для соответствующих структурных факторов могут быть определены по изменениям структурной амплитуды при замещении одного атома другим, отличающимся рассеивающей способностью, при условии, что замещение не приводит к изменению структуры. Как установили Блоу и Крик [55], при систематическом анализе ошибок, точность определения фазовых углов является наиболее существенным фактором при оценке результатов структурного анализа. Точное определение фазы гораздо важнее, чем определение амплитуды, как показано в работе Сринивазана [56], при объединении фаз для одной структуры с амплитудами для другой структуры, значительно отличающейся от первой, результирующий синтез Фурье довольно точно представляет первую структуру. Следовательно, в отличие от малых молекул сразу получают наилучшую из возможных карту с определенным набором фаз. Точность изображения структуры, рассчитанной таким образом, ограничивается только разрешением дифракционной картины. Это ограничение является основным источником неопределенности положения атомов при интерпретации карт электронной плотности. [c.20]

    Первоначально считалось, что роль Са(П) в ферментативном механизме нуклеазы стафилококка заключается в стабилизации конформации белка, необходимой для ферментативной активности и связывания субстрата в ходе гидролиза фосфата [299]. Проведенный в дальнейшем анализ карты электронной плотности тройного комплекса при высоком разрешении [297] показал, что ион Са(П) может взаимодействовать с -фосфатной группой кольца рибозы в ходе гидролиза эфиров либо через молекулу координированной воды, либо через связанный ион гидроксила. На рис. 26 представлена область активного центра, в которой координирован ион Са(П). На основе интерпретации карты электронной плотности с разрешением 200 пм предложена гексакоординацня иона Са(П) с близким к плоскостному расположением донорных атомов кислорода карбоксильных групп аспартата-19, аспартата-21, аспар-тата-40 и глутамата-43 [297, 299]. Атом кислорода карбонильной группы треонина-41 находится внутри координационной сферы центрального нона Са(И), вероятно, напротив координационного места, занятого молекулой воды. Более сложная вторая координационная [c.115]

    Очень важно иметь в виду следующее. Интерпретируя свои экспериментальные данные, исследователи нередко переоценивают их надежность и делают необоснованные выводы. Так, например, при анализе рентгеностр ктурных данных один исследователь может придавать большое значение каким-то изменениям на карте электронной плотности, а другой рассматривать их как артефакт. Наихудшие интерпретаторы из всех — это те, кто интерпретируют интерпретацию других. [c.345]

    При анализе белковых структур, особенно для белков, требующих иона металла, возникают и другие факторы, осложняющие исследование. Хорошо известно, что при рентгеноструктурном анализе белков ошибки, связанные с различными стадиями структурного анализа, например с определением фазы, уточнением положения тяжелых атомов и т. д., могут приводить к искажению дифракционной картины в областях отрицательной электронной плотности расчетной карты Фурье в центрах нахождения атомов тяжелых металлов. Это явление было отмечено в ранних работах по исследованию структуры метмиоглобина кашалота [65]. Такие искажения картины электронной плотности могут значительно усложнить структурную интерпретацию этих областей. Действительно, Ба-насзак и др. [66] отмечали, что области отрицательной электронной плотности на карте Фурье метмиоглобина кашалота могут затруднить интерпретацию структурных свойств лигандов, координируемых в определенных условиях с ионами цинка и меди. Центры связывания тяжелых металлов в замещенных производных в этом случае близки к центрам связывания обоих этих ионов. Сходная ситуация может возникать для ферментов, активируемых металлом, при связывании каталитически активных металлов. [c.23]


    При интерпретации карт разностной электронной плотности было предположено [142], что положение атома молекулы кислорода, координирующего с атомом железа, соответствует положению, занимаемому кислородом молекулы воды в метмиоглобине. Поскольку, согласно модели Полинга, с точки зрения электронной структуры атом железа должен образовывать резонансную двойную связь с координирующим атомом кислорода, следует ожидать некоторого уменьшения длины связи железо — кислород. Кроме того, в модели Полинга (рис. 17) требуется удлинение связи 0—0 вследствие образования простой связи между атомами координированного кислорода. Разностный синтез Фурье оксимиоглобина относительно метмиоглобина [142] не обладает достаточной точностью для определения столь детальных стереохимических соотношений. Кроме того, хотя образование водородной связи с остатком дистального гистидина может приводить к стабилизации молекулы в данном миоглобине, вообще говоря, она вовсе не обязательна. Как эритрокруорин hironomus [177], так и миоглобин Aplysia [178] не имеют остатка дистального гистидина, соответствующего остатку в миоглобине кашалота или гемоглобинах млекопитающих. [c.73]


Смотреть страницы где упоминается термин Интерпретация карты электронной плотности: [c.33]    [c.33]    [c.98]    [c.218]    [c.40]    [c.46]    [c.194]   
Смотреть главы в:

Биофизическая химия Т.2 -> Интерпретация карты электронной плотности




ПОИСК





Смотрите так же термины и статьи:

Мак-Карти

Плотность электронов

Электронная плотность

Электронная плотность Плотность электрон

Электронная плотность Электроны

карты



© 2025 chem21.info Реклама на сайте