Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кристаллы по Шоттки

    Точечные дефекты. Точечными, или атомными, дефектами в структуре ионного кристалла (какими и является основная часть кристаллов силикатов) являются дефекты по Шоттки и по Френкелю (вакансии) и дефекты, связанные с примесными атомами (твердые растворы). К точечным дефектам относятся также электронные. [c.167]

    Природа отклонений от стехиометрии в бинарных соединениях переменного состава состоит в том, что при любых температурах, отличных от абсолютного нуля, в реальном кристалле существуют дефекты структуры, С повышением температуры концентрация этих дефектов возрастает в силу увеличения энтропии системы (рост степени беспорядка). Наиболее упорядоченной структурой должен обладать идеальный кристалл, в котором каждый атом занимает предназначенный ему узел в подрешетке. При этом все узлы заняты, а все междоузлия свободны. Такая структура обладает полным порядком (энтропия равна нулю) и может быть реализована только при абсолютном нуле. При повышении температуры нарушения идеальной структуры возможны за счет возникновения незанятых узлов в кристаллической решетке, появления атомов в междоузлиях или существования в узлах решетки чужеродных атомов. Эти типы дефектов в кристалле являются простейшими. В реальных случаях возможно появление комбинаций этих дефектов. Возникновение таких дефектов в реальных кристаллах приводит к образованию ограниченных твердых растворов и появлению области гомогенности. Основные тины дефектов представлены на рис. 12. Рис. 12, а представляет схему идеальной кристаллической структуры бинарного соединения АВ. Рис. 12, б, б отражает существование незанятых узлов в подрешетках компонентов А и В. Такие незанятые узлы называются вакансиями или дефектами Шоттки. Это соответст- [c.57]


    Отсутствие одного нз элементов соединения в некоторых узлах его кристаллической решетки обусловливает изменение его состава — отклонение от стехиометрии . Известен ряд веществ, в кристаллах которых дефектов Шоттки так много, что отклонения от стехиометрии легко определяются химическим анализом. В зависимости от условий получения и роста кристаллов число вакансий может быть различным, поэтому нестехиометрические соединения обычно имеют непостоянный состав. К числу таких веществ относятся хорошо изученные оксид и карбид титана. Их состав можно выразить в общем виде формулами ТЮ , х = 0,70-г-1,30 и ЛСх, = 0,604-1,00. [c.152]

    Реальные твердые тела, исходя из этой модели, описываются как кристаллы, обладающие некоторым, нередко очень большим количеством дефектов. Теоретические работы Я. И. Френкеля (1926 г.), а затем Шоттки и Вагнера (1930 г.) и ряда других исследователей заложили основу физической химии несовершенных кристаллов, широко привлекающей наряду с физико-химиче-ским анализом квантово-механические методы и статическую термодинамику, в частности метод квазихимических реакций Шоттки и Вагнера. [c.166]

    Дефекты по Шоттки образуются при перемещении отдельных ионов на поверхность кристалла и возникновении незанятого узла кристаллической решетки—вакансии (рис. 102, а). При этом в целом электронейтральность решетки сохраняется. Различают положительные (катионные) и отрицательные (анионные) вакансии. Концентрации анионных и катионных вакансий в кристалле примерно одинаковы. На анионную вакансию может переместиться близлежащий анион, причем вакансия будет двигаться в обратном [c.167]

    Энергия образования дефектов по Шоттки несколько выше, чем по Френкелю. Так, в щелочно-галоидных кристаллах энергия образования дефектов по Шоттки и Френкелю составляет соответственно 2 и 1,5 эВ. [c.169]

    Дефекты по Шоттки и Френкелю оказывают влияние на ионную проводимость и диффузию в кристаллах благодаря миграции дефектов в решетке. Наличие дефектов имеет исключительное значение для таких процессов, как реакции в твердом состоянии, спекание и др. [c.169]

    Дефекты по Френкелю — не единственный тип дефектов в ионных кристаллах. В. Шоттки (1935), показал, что в реальном кристалле могут отсутствовать межузельные ионы и в то же время часть узлов решетки оказывается незанятой. Так как в целом должен соблюдаться баланс электрических зарядов, то каждой катионной вакансии соответствует анионная вакансия. Комбинацию катионной и анионной вакансии в ионном кристалле называют дефектом по Шоттки. Процесс протекания тока в таком кристалле можно рассматривать как последовательное осуществление перехода ионов кристаллической решетки в соседнюю вакансию. Подвижности катионных и анионных вакансий в общем случае различны, что и определяет преимущественную катионную или анионную проводимость. Типичный пример соединений с дефектами по Шоттки — галогениды щелочных металлов. [c.96]


    Вакансия, образовавшаяся по этому механизму, называется дефектом по Шоттки. В кристаллах металлов энергетически более выгодные дефекты по Шоттки, хотя возможно одновременное возникновение дефектов по Шоттки и Френкелю, однако дефектов по Френкелю формируется настолько мало, что их можно не учитывать в расчетах свойств кристаллов. [c.174]

    В ионных кристаллах, в которых должна соблюдаться электронейтральность, образование дефектов связано с перераспределением зарядов. Так, появление вакансии катиона сопровождается возникновением вакансии аниона (рис. 1.83а), такой тип дефекта в ионном кристалле называ,ется дефектом по Шоттки. Внедрение иона в междоузлие сопровождается появлением иа его прежнем месте вакансии, которую можно рассматри- [c.162]

    Картина усложняется при переходе от металлического кристалла к ионному. Здесь должна соблюдаться электронейтральность, поэтому образование дефектов связано с перераспределением зарядов. Так, появление вакансии катиона сопровождается возникновением вакансии аниона (рис. 145, а) такой тип дефекта в ионном кристалле называется дефектом Шоттки. Внедрение иона в междоузлие сопровождается появлением на его прежнем месте вакансии, которую можно рассматривать как центр заряда противоположного знака (рис. 145, б) здесь мы имеем дефект Френкеля. Указанные названия даны в честь [c.262]

    Дефектом по Шоттки называется пустой узел в кристаллической решетке. Он может иметь место в ионных, атомных и молекулярных кристаллах. Этот дефект часто называют вакансией. [c.89]

Рис. IV. 14. Кристалл с дефектами по Френкелю (о) и Шоттки (в). Рис. IV. 14. Кристалл с дефектами по Френкелю (о) и Шоттки (в).
    В случае ионных кристаллов различают дефекты по Френкелю и дефекты по Шоттки. [c.333]

    Если в кристалле имеется эквивалентное число катионных и анионных вакансий, а междоузельные ионы отсутствуют, говорят о дефектах по Шоттки (рис. 49, б). Катионные и анионные вакансии, по- [c.334]

Рис. 121. Идеальный двумерный кристалл (а), дефекты по Шоттки (б), дефекты по Френкелю (в) Рис. 121. Идеальный <a href="/info/476415">двумерный кристалл</a> (а), дефекты по <a href="/info/4272">Шоттки</a> (б), дефекты по Френкелю (в)
    Равновесные концентрации дефектов по Френкелю или Шоттки (возможно также наличие в кристалле дефектов обоих типов) определяются величинами свободных энергий образования дефектов. Получим соответствуюш,ие зависимости в предположении, что дефекты можно считать невзаимодействующими. Поскольку в системе действуют медленно убывающие с расстоянием кулоновские силы, данное предположение допустимо лишь при очень малой равновесной концентрации дефектов (строго говоря, при с- -0). И все же для реальных ионных кристаллов при температурах заметно ниже температур плавления приближение дает удовлетворительные результаты. [c.335]

    Другой возможный механизм разупорядочения, также неизбежного при Г>0°К, связан с возникновением вакансий н обеих подрешетках (см. рис. 6.5). Этот процесс, называемый разупорядочением типа Шоттки, можно выразить, . . уравнением О Уа + Ув, где знак О — символ идеального (бездефектного кристалла). [c.316]

    Итак, разупорядочение типа Шоттки приводит к возникновению вакансий во. . . подрешетках сложного кристалла. [c.320]

    Локальные напряжения в твердом теле, так же как и грани, обладающие наибольшими значениями а, чаще всего являются центрами адсорбции. Наряду с гранями большое значение для адсорбции имеют дефекты структуры реальных кристаллов. Они изучаются физикой твердого тела, и здесь следует отметить лишь основные положения, непосредственно связанные с адсорбцией. Наиболее простыми- типами являются точечные дефекты по Френкелю, образованные избыточными (в междоузлиях) или внедренными атомами (или ионами), и дефекты по Шоттки, образованные недостающими в решетке атомами — вакансиями. Организованные совокупности точечных дефектов представляют собой дислокации, краевые (линейные) или винтовые. Дислокации выходят на поверхность в виде ступенек и обусловливают в основном несовершенство поверхностей. [c.138]

    Рассмотрим типы точечных дефектов кристаллической решетки. На рис. 70, а приведена идеальная кристаллическая решетка решетка с атомами в междоузлиях и вакансиями (Френкель) показана на рис. 70,б, а возникновение вакансий за счет поверхностного испарения (Шоттки) приведено па рис. 70, в. Вакансии в кристалле перемещаются, так как их место может быть занято соседними атомами. Вакансии могут скапливаться в каком-нибудь одном месте — коагуляция вакансий. [c.111]

    Дефекты по Шоттки ( структуры разрыхления ) заключаются в том, что атомы из части узлов перемещаются на поверхность кристалла, оставляя вакансии, в которые могут переходить атомы изнутри, а вакансии могут диффундировать внутрь кристалла. Нагревание способствует образованию таких структур разрыхления . Схема их образования  [c.136]


    Некоторые положительно и отрицательно заряженные ионы смеш,аются вплоть до выхода на поверхность кристалла, как это показано на рис. 26.1,6. Такие отклонения кристаллов от идеальности получили название дефектов по Шоттки. [c.332]

    На рис. 121, а изображен идеальный двумерный кристалл, находящийся в равновесии при Т = 0. На рис. 121, б изображен кристалл, в котором некоторые атомы удалены от своих нормальных положений в узлах решетки и расположены на поверхности, где они образовали новый слой нормальной кристаллической решетки. В этом случае говорят об образовании дефектов по Шоттки. Если атом кристалла переходит в междоузлие (рис. 121, в), то говорят об образовании дефектов по Френкелю . Предполагается, что точки а тл Ъ расположены так далеко друг от друга, что взаимодействие между атомом в точке Ь и атомами, расположенными вокруг точки а (вакансии), отсутствуют. Таким образом, дефект по Френкелю состоит из атома в междоузлии и вакантного узла решетки, или дырки . [c.279]

    На первый взгляд может показаться,что проводимость кристалла должна определяться суммой двух членов вида (508), так как дефекты обычно встречаются парами. В кристаллах с дефектами Шоттки вакантным катионным узлам решетки соответствует равное количество вакантных анионных узлов решетки. В случае дефектов по Френкелю ионам в междоузлиях отвечает такое же число дырок. В действительности же энергия активации i/g носителей заряда различна, и это различие благодаря экспоненциальной зависимости а от Uq обусловливает доминирующую роль одного какого-либо сорта ионов. Поэтому, согласно (508), график зависимости 1п аТ от обратной температуры должен представлять собой практически прямую линию. Однако на практике часто определяют зависимость 1п а от и оказывается, что это дает также прямую линию (рис. 123). Вообще говоря, член 1п Т не настолько существен, чтобы вызвать отклонения от линейности. График зависимости 1п а от Т может представлять собой прямую линию даже в том случае, когда проводимость обусловлена более чем одним механизмом. Например, для чистого КС1 зависимость ]п а от Т оказывается почти линейной (см, рис. 123). Поэтому на основании линейного характера таких кривых нельзя утверждать, что имеется только один тип носителей заряда. [c.283]

    Замораживание дефектов . Предположение о возможности замораживания дефектов основывается на том факте, что для установления равновесной концентрации дефектов требуется определенный период времени. Таким образом, если кристалл охлаждается, то дефекты решетки должны непрерывно исчезать. Дефекты по Френкелю будут исчезать в результате рекомбинации вакансий и межузельных атомов, а дефекты по Шоттки — вследствие миграции вакансий к поверхности кристалла и границам зерен. Как показано [25], влияние этого эффекта на обычную низкотемпературную проводимость чистого кристалла незначительно. [c.284]

    Если рассматривать в качестве гипотетической исходной модели твердого тела идеальный кристалл, находящийся при температуре абсолютного нуля, то все образующие его частицы будут занимать вполне определенные места, образуя правильную кристаллическую решетку. При повышении температуры, в результате теплового движения частиц, этот порядок нарушается. Часть частиц может покинуть свои места в узлах решетки (образуются вакантные узлы) и занять положение в междууз-лиях ( дефекты по Френкелю ). В некоторых случаях частица может покинуть положение в междуузлии и выйти на поверхность в этом случае в решетке образуются только вакантные места ( дефекты по Шоттки ). При данной температуре Г число п дефектов данного вида, находящихся в термодинамическом равновесии с кристаллической фазой, будет определяться выражением [c.339]

    В работах Гримлея, Хонига на основе современных представлений о наличии дефектов в построении решетки реальных ионных кристаллов (как вакансий в узлах решетки, так и внедрения в междоузлия по Шоттки и Я. И. Френкелю) разработана теория и дано экспериментальное подтверждение диффузного распределения избыточных зарядов одного знака в поверхностном слое твердого тела (см. также стр. 51). [c.36]

    В разупорядоченных кристаллах проводящие катионы не локализованы в определенных местах решетки, а непрерывно кочуют по вакантным пустотам. Катионная подрешетка таких кристаллов разрушена и находится в квазижидком состоянии. При этом понятия вакансии и межузлия нивелируются, число вакансий близко или даже превышает число самих ионов. Поэтому к разупорядоченным кристаллам неприменима теория Френкеля — Шоттки, в основе которой лежит предположение о незначительных нарушениях идеальной структуры кристалла. [c.99]

    Теория Френкеля — Шоттки, позволяет получить количественные соотношения между проводимостью и концентрацией дефектов. Поэтому, измерив проводимость твердого электролита, можно по соответствующим уравнениям вычислить число дефектов. Было найдено, например, что в Na l при температуре, близкой к температуре плавления, концентрация вакансий равна (1 вакансия на каждые 10 000 катионов). Малая концентрация вакансий служит одной из причин того, что нормальные ионные кристаллы (типа Na l, Ag l и др.) даже при высоких температурах и в присутствии небольшого количества примесных ионов обладают проводимостью, не превышающей 0,1 См/м. Поскольку вакансии и межузельные ионы заряжены, можно ожидать, что они будут взаимодействовать между собой так же, как ионы в растворах электролитов. Френкель впервые указал, что это взаимодействие можно описать теорией Дебая — Гюккеля. Взаимодействие дефектов ведет к снижению энтальпии их образования и сказывается на величине проводимости ионных кристаллов. [c.107]

    Нарушения идеальной структуры даже в самых мелких кристалликах возникают, главным образом, в результате тепловых колебаний, которые совершают частицы, находящиеся в узлах решетки. При таких колебаниях они смещаются из положений равновесия довольно значительно, особенно при высоких температурах. В некоторых случаях колебания столь велики, что частицы выходят из узлов решетки в междуузлия — так называемые дефекты Френкеля (рис. XIII.За). В других случаях частицы вовсе покидают кристалл (например, испаряются или выходят на поверхность), тогда в решетке остаются пустоты или вакансии, которые называются дефектами Шоттки (рис. XIII.36). И те и другие дефекты участвуют в тепловом движении и поэтому перемещаются внутри кристалла. Естественно, что присутствие дефектов облегчает диффузию примесей в кристаллах. Атомы примесей совершают скачки из одного узла решетки в другой. Такие скачки облегчаются, если возникают промежуточные незанятые узлы или между-узельные вакансии. [c.166]

    Дефекты по Шоттки, характеризующиеся равенством чисел катионных и анионных вакансий, зарождаются на поверхности кристалла или его внутренних микротрещин и диффундируют вглубь кристалла. Катионные и анионные вакансии перемещаются независимо друг от друга. Дефекты такого рода наблюдаются, например, в кристалле Na l. [c.191]

    Наличием дефектов обусловлена ионная проводимость кристалла. В случае дефектов по Френкелю электричество переносится при движении вакансий и междоузельных ионов, причем в этом процессе обычно участвует ион лишь одного знака. Так, в кристалле AgBr переносчиком электричества является катион Ag+. При наличии дефектов по Шоттки (кристалл Na l) электричество переносится и катионами, и анионами (в процессе движения катионных и анионных вакансий). [c.191]

    Наличием дефектов в структуре решетки обусловлена ионная проводимость кристаллов. Если дефекты являются дефектами по Френкелю, перенос элетричества осуществляется при движении вакансий и междоузельных ионов в объеме кристалла, причем в этом процессе обычно участвует практически ион лишь одного знака (как мы заметили ранее, обычно только катионы или только анионы в значительной степени переходят в междоузлия). Так, в случае кристалла AgBr переносчик электричества — катион Ag+ измеряемое на опыте число переноса аниона Вг равно нулю. При наличии дефектов по Шоттки (кристалл Na l) перенос заряда осуществляется как катионами, так и анионами в процессе движения катионных и анионных вакансий. [c.334]

    В кристалле Ag l, как и в других химических соединениях, вакансии в неметаллической подрешетке являются. .. электронов. Учитывая, что при разупорядочении типа Шоттки вакансии образуются во. . . подрешетках, можно ожидать, что металлические вакансии —... электронов (см. примеры справа). [c.326]

    Механизм диффузионных процессов в твердых телах бывает различным диффузия атомов по междуузлиям кристаллической решетки, по вакансиям в структурах Шоттки (см. гл. IV, 8), по протяженным дефектам монокристаллов (по дислокациям), по поверхности зерен в поликристаллах и т. д. Скорость диффузии очень сильно зависит от концентрации дефектов в кристаллах и от их вида. Особенно облегчается диффузия в твердых телах при большом числе дислокаций и при развитой поверхности зерен в поликристаллах. [c.49]

    Рассмотрим в рамках аналогичной модели процесс образования дефектов по Шоттки. В этом случае, как один из вариантов, катион и анион могут создавать в кристалле парные вакансии, число которых в объеме кристалла равно Па, а общее число ионных пар в равновесной идеальной решетке N. Запишем схему процесса обра- [c.333]


Смотреть страницы где упоминается термин Кристаллы по Шоттки: [c.465]    [c.97]    [c.108]    [c.250]    [c.241]    [c.264]    [c.334]    [c.318]    [c.334]    [c.281]   
Общая химия в формулах, определениях, схемах (1996) -- [ c.88 ]

Общая химия в формулах, определениях, схемах (0) -- [ c.88 ]

Общая химия в формулах, определениях, схемах (1985) -- [ c.88 ]

Общая химия в формулах, определениях, схемах (0) -- [ c.88 ]




ПОИСК





Смотрите так же термины и статьи:

Дефекты кристаллов Шоттки

Шоттки



© 2025 chem21.info Реклама на сайте