Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кристаллы металлов

    По строению вещества Молекула, молекулярная или атомная решетка Ионный кристалл (ионная кристаллическая решетка) Кристалл металла (металлическая решетка) [c.57]

    На чем основано утверждение теории делокализованных молекулярных орбиталей в применении к металлам, что весь кристалл металла можно рассматривать как одну гигантскую молекулу  [c.641]


    При электролизе комплексных солей концентрации ионов металла несравненно меньше. Убыль их пополняется обычно только за счет диффузии, тогда как основная масса металла в виде комплексных анионов перемещается к аноду. Вследствие этого около тех точек поверхности катода, где происходит выделение кристаллов металла, раствор весьма быстро обедняется ионами металла и катионы начинают разряжаться и у других точек поверхности катода, где их концентрация больше. Таким образом, осаждение происходит равномерно по всему катоду, и осадок получается более ровным и плотным. Поэтому комплексные соединения металлов применяются в электрогравиметрическом анализе очень частя. [c.439]

    Более совершенную модель металлической связи позволяет создать теория молекулярных орбиталей. Согласно этой модели, весь кристалл металла следует рассматривать как одну гигантскую молекулу. Все атомные орбитали определенного типа взаимодействуют в кристалле, образуя совокупность делокализованных орбиталей, простирающихся по всему кристаллу. Число валентных атомных орбиталей в отдельном кристалле достигает 10 . Чтобы представить себе, как происходит взаимодействие столь большого числа валентных орбиталей, рассмотрим гипотетическую последовательность линейных молекул лития, Ыг, з, в которых основную роль играют валентные 25-орбитали. На рис. 14-24 показано образование молекулярных орбиталей для трех указанных молекул. Отметим, что вследствие делокализации молекулярных орбиталей ни одному из электронов не приходится располагаться на разрыхляющей орбитали. По мере удлинения цепочки атомов в молекуле расстояние между орбитальными энергетическими уровнями все более сокращается. В предельном случае для кристалла, состоящего из 10 атомов, комбинация атомных орбита-лей приводит к возникновению широкой полосы, или, как говорят, зоны, тесно расположенных энергетических уровней. [c.625]

    Согласно этой теории, катализ происходит только при структурном и энергетическом соответствии катализируемых молекул данному катализатору. Теорией Баландина было предсказано, что реакции каталитического гидрирования бензола и дегидрирования циклогексана могут идти только на переходных металлах, имеющих гранецентрированную кубическую структуру или гексагональную структуру и притом атомные радиусы строго определенных размеров. При этих условиях шестичленные циклы образуют на октаэдрических гранях кристаллов металла шесть связей М— — С — С, валентный угол которых близок тетраэдрическому углу. Данным условиям удовлетворяют палладий, платина, иридий, родий, осмий и все они являются активными катализаторами гидрирования бензола и дегидрирования циклогексана. В то же время металлы, обладающие объемноцентрированной структурой, например тантал, вольфрам, даже при почти таких же размерах их атомных радиусов, как у платиновых металлов, а также металлы, имеющие такую же кристаллическую структуру, как платина, но иные размеры атомных радиусов, в частности серебро, золото, или не относящиеся к переходным элементам — медь, цинк,—все эти металлы не проявляют каталитической активности в вышеуказанных реакциях. Таким образом, структура поверхностных соединений бензола и циклогексана с платиновыми металлами была описана и доказана. Мало того, было, в сущности, установлено, что в условиях катализа подобные соединения легко и притом в точности воспроизводятся. Иначе катализ был бы невозможен. [c.59]


Рис. 23.1. Модель растворяющейся грани кристалла металла с указанием энергетически неравноценных положений отдельного структурного элемента Рис. 23.1. Модель растворяющейся <a href="/info/334739">грани кристалла</a> металла с указанием <a href="/info/1592848">энергетически неравноценных</a> положений отдельного структурного элемента
    Природу химической связи и характерные особенности металлов можно объяснить на примере лития следующим образом. В кристалле лития орбитали соседних атомов перекрываются. Каждый атом предоставляет на связь четыре валентные орбитали и всего лишь один валентный электрон. Значит, в кристалле металла число электронов значительно меньше числа орбиталей. Поэтому электроны могут переходить из одной орбитали в другую. Тем самым электроны принимают участие в образовании связи между всеми атомами кристалла металла. К тому же атомы металлов характеризуются невысокой энергией ионизации — валентные электроны слабо удерживаются в атоме, т. е. легко перемещаются по всему кристаллу. Возможность перемещения электронов по кристаллу определяет также электрическую проводимость металла. [c.89]

    Неправильное расположение отдельных атомов в кристаллической решетке создает точечные дефекты. В кристалле, состоящем из одинаковых атомов, например в кристалле металла, в каком-то участке решетки может отсутствовать один из атомов. На его месте будет полость, вокруг нее — искаженная структура (рис. 1.90а). Такой дефект называется вакансией. Если же атом данного вещества или атом примеси попадает между атомами в узлах решетки (рис. 1.906), то возникает дефект внедрения. [c.151]

    Выделение тонких частиц окисла в металлической фазе при внутреннем окислении приводит к поверхностному упрочнению сплава, затрудняет рекристаллизацию и рост кристаллов металла. [c.107]

    Особенностью этого вида разрушения по сравнению с обычной коррозионной усталостью является соизмеримость периодически напряженных участков с размерами отдельных кристаллов металла (напряжения второго рода). В связи с этим на кавитационную стойкость сплавов большое влияние оказывают механическая прочность, структура и состояние границ зерен сплава. Например, чугун с шаровидным графитом более устойчив к кавитации, чем обычный чугун, а еще более устойчивы стали. [c.341]

    Большинство применяемых на практике материалов состоит не из одного, а из двух, трех или большего числа видов кристаллов. (Металлы применяются главным образом в виде сплавов, а сплавы, как правило, содержат кристаллы двух или нескольких видов. Гранит состоит из кристалликов кварца, слюды и полевых шпатов.) Силы, связывающие эти кристаллы в одно твердое тело, не всегда обусловливаются непосредственным взаимодействием поверх- ностных частиц этих кристаллов. Механические и другие свойства материала могут также зависеть от свойств тонких прослоек между кристаллами, от сцепления их с поверхностью кристаллов. В этих прослойках нередко сосредоточиваются различные примеси, чем и объясняется сильное влияние незначительных примесей на механические и другие свойства материала. Такие прослойки могут находиться не в кристаллическом, а в стеклообразном состоянии. Описанные структуры играют важную роль в керамических материалах, [c.144]

    VI е т а Л Л И ч е С К а я связь отличается тем, что валентные электроны являются общими для всего кристалла. Металл пред-ста ляет собой совокупность пространственной решетки, построенной из положительных ионов, возникающих в результате отщепления от каждого из атомов одного или нескольких валентных электронов, и этих отщепившихся электронов, движущихся внутри решетки и взаимодействующих как с ионами, расположенными в узлах решетки, так и друг с другом. Электроны не принадлежат определенным атомам. Они непрерывно н беспорядочно перемещаются внутри кристаллической решетки, переходят от одного атома к другому, связывая их. Скопление электронов, осуществляющих. металлическую связь, получило название электронного газа. [c.9]

    Определение величины с1 подобным образом основано на допущении о кубической форме кристаллов металла к доступности для адсорбции пяти граней куба. [c.375]

    В начале прошлого столетия Г. Деви удалось получить блестящие кристаллы металла, которому он дал название магний. [c.505]

    Зонная структура энергетического спектра, как мы видели выше, отражает ту особенность природы атомных кристаллов (металлов, полупроводников и изоляторов), что в них существует непрерывный трехмерный каркас межатомных связей и свойственное кристаллическому веществу периодическое поле. Электронный энергетический спектр молекулярных кристаллов, построенных из отдельных нульмерных молекул, соединенных ван-дер-ваальсовскими связями, не имеет обычной зонной структуры, а представляет собой совокупность до некоторой степени искаженных в результате слабого обменного взаимодействия молекул молекулярных энергетических спектров, состоящих из дискретных энергетических уровней. Кристаллы цепочечной, сетчатой и каркасной структуры, в том числе разнообразные соединения включения, мы рассматриваем как разновидности молекулярных кристаллов, построенных, соответственно, из одно-, двух- и трехмерных молекул или из их комбинаций. Их энергетические спект- [c.118]


    Образование вздутий и раковин в результате межкристаллитной коррозии объясняется тем, что при повышенных температурах и давлении из молекулы водорода образуется атомарный водород (протон Н ) который способен проникать в кристаллы металла и вступать в соединения с цементитом РеС, упрочняющей составляющей стали. Происходит реакция РеС+2Н, Ре СН . Источником образования атомарного водорода является сероводород, реагирующий с железом по уравнению Ре + Н,5 = Ре5 + 2Н. Этот процесс активизируется при температуре выше 260 С. Образовавшийся за счет реакции с цементитом метан усиливает внутреннее напряжение, приводящее к образованию вздутий, разрывов и растрескиванию металла по фаницам зерен сплава. [c.170]

    Различают коррозии равномерную, местную и межкристаллитную (рис. 58). Равномерная коррозия распространяется по всей поверхности металла, местная —на отдельных ее участках, а меж-кристаллитная —вокруг отдельных кристаллов металла. Самой опасной является межкристаллитная коррозия, так как она резко снижает механическую прочность металла. [c.177]

    Рассмотренная картина электронного строения твердых металлов показывает, что валентные электроны, осуществляющие химическую связь, принадлежат не двум или нескольким определенным атомам, а всему кристаллу металла. При этом валентные электроны способны свободно перемещаться в объеме кристалла. Связь является в высшей степени делокализованной. Образованную подобным образом химическую связь называют металлической связью, а совокупность делокализованных электронов в металле — электронным газом. [c.150]

    Схема пластического сдвига в кристалле металла изображена на рис. 11.5. Внешняя сила Р первоначально вызывает небольшое смеш ение атомов вертикальных рядов 1, 2, 3 (рис. 11.5, а). С увеличением силы Р это смещение возрастает и ряд атомов 1 (выше плоскости скольжения АА) проскакивает нейтральное положение между 1 и 2. При этом ряд 2 превращается в лишнюю плоскость и образует дислокацию (рис. 11.5, 6), [c.324]

    Специфика адсорбции компонентов гетерогенно-каталитических процессов сказывается и на специфике соответствия катализаторов данной реакции, т. е. затрагивает вопросы их подбора. В случае катализатора на носителе (например, Pt на угле) последний играет роль адсорбционного резервуара для расположенных на его поверхности активных центров (атомов и кристаллов металла). Поэтому гидрирующие катализаторы на активном угле (уголь хорошо адсорбирует водород) высокоактивны в отличие от катализаторов Pt на силикагеле, который хорошо адсорбирует непредельные углеводороды и потому более подходит в качестве носителя Pt для обратного процесса — дегидрирования. [c.311]

    Вакансия, образовавшаяся по этому механизму, называется дефектом по Шоттки. В кристаллах металлов энергетически более выгодные дефекты по Шоттки, хотя возможно одновременное возникновение дефектов по Шоттки и Френкелю, однако дефектов по Френкелю формируется настолько мало, что их можно не учитывать в расчетах свойств кристаллов. [c.174]

    Рассмотрим кристалл металла. Характерной особенностью атомов всех металлов является то, что у них на внешних оболочках имеются вакантные орбитали. При объединении атомов в кристалл эти орбитали перекрываются так, что между атомами образуются области (зоны), по которым свободно могут передвигаться электроны. Как и в случае ковалентной связи, металлическая связь образуется путем обобществления валентных электронов, но Валентные электроны в кристалле металла в отличие от ковалентного кристалла утрачивают связь с отдельными атомами и свободно перемещаются по всему [c.100]

    Схему структуры кристалла металла можно представить следующим образом (черные точки — электроны)  [c.101]

    Редиспергирование платины, нанесённой на А12О3, можно объяснить исходя из того, что чистые металлы имеют значительно большее поверхностное натяжение, чем их оксиды. Поэтому кристаллы металла не смачивают поверхность носителя, но при окислении металла смачивание на границе раздела сильно увеличивается и Pt02 "растекается" по поверхности носителя, образуя дисперсную фазу. Однако, только мелкие кристаллиты платины (1-3 нм) способны окисляться кислородом при 500°С. Так как при 600°С образуются крупные кристаллиты, редиспергировать их трудно. [c.60]

    Предположение де Бронля о наличии у электрона волновых свойств получило экспериментальное подтверждение уже в 1927 г., когда К- Д. Девиссоном и Л. X. Джермером в США, Дж. П. Томсоном в Англин и П. С. Тартаковским в СССР независимо друг от друга было установлено, что прн взаимодействии пучка электронов с дифракционной решеткой (в качестве которой использовались кристаллы металлов) наблюдается такая же дифракпион-ная картина, как и при действии на кристаллическую решетку металла пучка рентгеновских лучей в этих опытах электро вел себя как волна, длпна которой в точности совпадала с вычисленной по уравнению де Бройля. В настоящее время волновые свойства электронов подтверждены большим числом опытов и широко используются в электронографии — методе изучения структуры веществ, основанном на дифракции электронов. [c.70]

    В кристалле металла главной подгруппы второй группы (на-гфимер, кальп,ия) из И Л одных атомных. s-орбит ялей наружн(Л 0 слоя также образуется Зона, еоегоуштая из Ы уровней. Но, qo- [c.532]

    Кристаллы металлов обычно имеют небольшие размеры. Поэтому любое металлическое изделие состоит из большого чис.па кристаллов. Такая структура называется поликристаллической. При кристаллизации металла из расплавленного состояния растуш,ие кристаллы мешают друг другу принять правильную форму. Поэтому кристаллы поликристаллического тела имеют неправильную форму и в отличие от правильно ограненных кристаллов называются кристаллитами или зернами. Зерна различаются между сюбой пространственной ориентацией их кристаллических решеток (рис. 11.2). [c.320]

    Рассмотренная картина электронного строения твердых металлов показывает, что валентные электроны, осуществляющие химическую связь, принадлежат не двум или нескольким определе1П1ЫМ атомам, а всему кристаллу металла. При этом валентные электроны способны свободно перемещаться в объеме кристалла. Обра- [c.534]

    Предположение де Бройля в дальнейшем подтвердилось — была обнаружена дифракция электронов. При прохождении пучка электронов через дифракционную решетку на фотопластинке наблюдается такая же дифракционная картина, как и при прохождении излучения с длиной волны, равной значению "к, вычисленному по уравнению (1.23). Е> качестве дифракционной решетки использовали кристаллы металлов (атомы в кристаллах расположены в правильном поряд Ге, образуя естественную дифракционную решетку). Впервые оп Бгты, обнаружившие дифракцию электронов, были проведены в 1927г. Девиссоном и Джермером (США), [c.17]

    Еще одним моментом, специфичным для данного процесса, является удаление углерода из стали и ее охрупчивание под воздействием высоких температур и относительно высоких давлений водорода. Это воздействие объясняется тем, что водород проникает к внутренним кристаллам металла и превращает некоторое количество элементарного или связанного углерода в метан, который выделяется в виде пузырька в объеме металла. Этот пузырек увеличивается, дополнительно снижая прочность ул е обезуглерол енного и ослабленного металла. [c.144]

    Электрохимическая коррозия протекает иитенеивно при наличии в качестве катодных участков, вкрапленпя кристаллов металла, меиее активного, чем корродирующий металл. При коррозии обык-иове ной стали роль таких участков играют вкраилеиия кристаллов карбида железа. [c.242]

    Наименьшим электрическим сопротивлением обладают метаалы, атомы которых имеют в качестве валентных только внешние 5-электроны. (Атомы серебра, меди и золота вследствие проскока з-электронов имеют электронные конфигурации валентных оболочек атомов щелочных элементов пз ). В этих случаях в компактных металлах реализуется, как правило, металлическая связь. Появление неспаренных р- и -электронов приводит к увеличению доли направленных ковалентных связей, электропроводность у.меньшается. Атом железа на предвнешней электронной оболочке имеет неспаренные Зс/-электроны, которые также образуют ковалентные связи. Кроме этого, в кристалле металла, когда энергетические уровни атомов объединяются в энергетические зоны, Зс(-и 45-зоны пересекаются. Поэтому при определенном возбуждении -электроны могут перейти на молек лярные орбитали -зоны н, таким образом, количество носителей заряда может уменьшиться. Поэтому металлы -элементов с частично заполненной электронной -подоболочкой у атомов имеют несколько более высокое электрическое сопротивление, чем металлы непереходных элементов. [c.323]

    При сравнении же металлов в ряду напряжений за меру химической активности принимается работа превращения металла, находящегося в твердом состоянии, в гидратированные ионы в водном растворе. Эту работу можно представить как сумму трех слагаемых энергии атомизации — превращения кристалла металла в изолированные атомы, энергии ионизации свободных атомов металла и энергии гидратации образующихся ионов. Энергия атомизации характеризует прочность кристаллической решетки данного металла. Энергия ионизации атомов — отрыва от них валентных электронов — непосредственно определяется положением металла в периодической системе. Энергия, выделяющаяся при гидратации, зависит от электронной структуры иона, его заряда и радиуса. Ионы лития и калия, имеющие одинаковый заряд, но различные радиусы, будут создавать около себя неодинаковые электрические поля, Поле, возникающее вблизи маленьких ионов лития, будет более си.пьным, чем поле около больших ионов калия. Отсюда ясно, что ионы лития будут гидратироваться с выделением большей энергии, чем ионы калия. [c.329]

    В таких системах компоненты при кристаллизации образуют твердые растворы замещения и внедрения. Твердые растворы внедрения образуют Обычно элементы, атомы которых имеют малый диаметр (водород, бериллий, бор, углерод, азот) это позволяет им внедряться в кристаллы металла-растворителя, располагаясь в междоузлиях. В результате виедреиия происходит деформация кpи тaJrлoв, что приводит к изменению их физико-механических свойств. Так, внедрение водорода, бериллия, бора, углерода или азота в кристаллы н елеза резко увеличивает его твердость. Это свойство широко используется в современном машиностроении. [c.120]

    Электрический метод является одновремершо диспергацион-ным и конденсационным. Его используют для приготовления коллоидных растворов благородных металлов золота, платины, серебра и др. К двум электродам из благородного металла (например, золота), которые погрулсены в жидкость (например, и воду), подводят электрическое напряженке. Электроды вначале замыкают под водой и затем медленно отводят один от другого. Под водой образуется электрическая дуга, развивается высокая температура, металл испаряется и в виде атомов попадает в воду. При этом происходит конденсация в результате огромного перепада температур образуются чрезвычайно мелкие кристаллы металла ко.плоидной степени дисперсности. [c.386]


Смотреть страницы где упоминается термин Кристаллы металлов: [c.439]    [c.292]    [c.536]    [c.538]    [c.334]    [c.624]    [c.627]    [c.63]    [c.21]    [c.91]    [c.89]    [c.24]    [c.14]    [c.10]    [c.55]    [c.101]   
Смотреть главы в:

Химическая структура и реакционная способность твердых веществ -> Кристаллы металлов


Физическая химия поверхностей (1979) -- [ c.213 ]

Коррозия химической аппаратуры и коррозионностойкие материалы (1950) -- [ c.12 ]

Общая химия (1968) -- [ c.579 ]




ПОИСК







© 2025 chem21.info Реклама на сайте