Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Титан химические свойства

    Благодаря тому, что атомы и ионы аналогичных элементов побочных подгрупп пятого и шестого периодов имеют не только сходное электронное строение, но и практически совпадающие размеры,— а их химических свойствах наблюдается гораздо более близкое сходство, чем в случае элементов четвертого и пятого периодов. Так, цирконий по своим свойствам значительно ближе к гафнию, чем к титану, ниобий сходен с танталом в большей степени, чем с ванадием и т. д. [c.642]


    Такие металлы, как титан, тантал, молибден, цирконий,, ниобий и другие, а также ряд нитридов, карбидов, силицидов тугоплавких металлов нашли применение в некоторых отраслях промышленности. Эти металлы и их сплавы обладают ценными физическими и химическими свойствами и значительной коррозионной устойчивостью в сильноагрессивных средах, которая в некоторых случаях превосходит устойчивость нержавеющих сталей, платины, золота и серебра. [c.149]

    Своеобразные химические свойства фтора и большое практическое значение многих его соединений обусловили развитие ряда методов, основанных на образовании или разложении нерастворимых и комплексных соединений. Известно, что ионы фтора образуют в водных растворах прочные комплексные (иногда нерастворимые) соединения с алюминием, железом, кремнием, цирконием, ураном, титаном и другими элементами. Некоторые соединения (например, фтористый алюминий) растворимы в воде, но очень мало диссоциируют и почти не подвергаются гидролизу. Эти свойства соединений фтора широко используются в химическом анализе для определения и отделения ряда элементов, а также для определения ионов фтора Для методов, основанных на образовании или разложении соединений фтора, характерны следующие группы реакций. [c.426]

    В своих важнейших и наиболее характерных производных элементы подгруппы титана четырехвалентны. Сам титан сравнительно легко образует малоустойчивые соединения, в которых он трехвалентен. Производные двухвалентного титана немногочисленны и весьма неустойчивы. То же относится к производным трех- и двухвалентного циркония, а также гафния, соединения которого по химическим свойствам очень близки к соответствующим соединениям циркония. Таким образом, по ряду Ti — Zr — Hf идет понижение устойчивости низших валентностей, т. е. явление, обратное тому, которое имело место в подгруппе германия. [c.644]

    В настоящее время редкие металлы получили применение в самых разнообразных областях науки и техники, причем области применения их из года в год расширяются. Это прежде всего объясняется особыми физическими и химическими свойствами редких металлов, так, например, германий является ценнейшим материалом дЛ1 изготовления полупроводниковых приборов, широко применяемых в различных областях радиотехники и электронике. Для этих же целей применяются индий, теллур, селен и другие. Введение редких металлов в стали и в сплавы цветных металлов обеспечило получение материалов, стойких против коррозии, жаропрочных, обладающих большой механической прочностью и другими ценными свойствами. В химической технологии и металлургии принято разделять редкие металлы на следующие технические подгруппы а) легкие литий, рубидий, цезий, бериллий и др б) тугоплавкие титан, цирконий, гафний, ванадий, ниобий, тантал, молибден, вольфрам, рений в) рассеянные галлий, индий, таллий, германий г) редкоземельные скандий, иттрий, лантан и лантаноиды радиоактивные полоний, радий, актиний и актиноиды. [c.419]


    Химические свойства. Титан, как и алюминий, довольно активный металл. Однако благодаря образованию на поверхности мета.лла плотной защитной оксидной пленки он обладает исключительно высокой стойкостью против [c.109]

    Простые вещества. Физические и химические свойства. В компактном состоянии все три элемента V—КЬ—Та представляют собой металлы светло-серого цвета, хорошо поддающиеся механической обработке в чистом состоянии. Все эти металлы характеризуются кристаллическими структурами с координационным числом 8 (ОЦК). Для металлов это сравнительно неплотная упаковка. В сочетании с более высокими температурами плавления элементов подгруппы ванадия по сравнению с титаном и его аналогами факт неплотной упаковки указывает иа возрастание ковалентного вклада в химическую связь. Это обусловлено увеличением числа иеспаренных электроиов на заполняющейся дефектной (п—1) -оболочке. Закономерность изменения параметров кристаллических решеток хорошо коррелирует с величинами атомных радиусов. [c.301]

    Б главных подгруппах химические свойства элементов могут меняться в широком диапазоне от неметаллических к металлическим (например, в главной подгруппе V группы азот-неметалл, а висмут-металл). В побочных подгруппах свойства элементов меняются не так резко, например, элементы побочной подгруппы IV группы-титан, цирконий, гафний-весьма схожи по своим свойствам (особенно два последних элемента). [c.34]

    Химические свойства. Титан, цирконий и гафний представляют очень большой интерес в связи С тем, что их восстановительная активность весьма сильно зависит от температуры. При обычных температурах титан, цирконий и гафний имеют чрезвычайно низкую восстановительную активность и обладают высокой коррозионной устойчивостью в большинстве агрессивных сред. С повышением температуры восстановительная активность металлов растет и у титана при температуре его плавления является одной из самых высоких среди металлов. [c.79]

    Химические свойства. При обычной температуре титан довольно устойчив при нагревании же легко соединяется со многими элементами, в том числе и со сравнительно инертным азотом. Так, в струе хлора он загорается при 350° С. В кислороде аморфный титан загорается при 610° С, сплавленный — при 800° С. При 800° С он образует с азотом нитрид титана TiN при более высокой температуре TiN разлагается на металлический титан и азот. С углеродом при нагревании титан образует карбид состава Ti , причем избыточный углерод выделяется в виде графита. Еще при более высокой температуре титан соединяется с кремнием и бором, образуя чрезвычайно твердые вещества — силициды и бориды титана. Такое большое сродство титана ко многим элементам весьма сильно усложняет и затрудняет переработку титановых руд. [c.293]

    Элементы побочной подгруппы IV группы титан, цирконий и гафний. Строение атомов. Химические свойства элементов. Характер окислов. Двуокись титана и ее гидроокись. Надтитановая кислота. [c.235]

    Присадка титана в количестве 5—10% к меди и алюминию улучшает их физико-химические свойства. Титан широко применяется в твердых и жаропрочных сплавах. Порошкообразный титан используют как поглотитель газов (гетер) в электровакуумной промышленности. [c.327]

    Физические и химические свойства. Титан, цирконий и гафний — типичные металлы. Металлическая активность их растет с увеличением порядкового номера. Существуют они в двух полиморфных видоизменениях низкотемпературных а-формах с гексагональной решеткой плотной упаковки и высокотемпературных Р-формах с кубической объемно центрированной решеткой. [c.409]

    Физические и химические свойства. Титан, цирконий и гафний, как и все переходные элементы,— металлы. Они существуют в двух полиморфных модификациях при низкой температуре их решетка гексагональная плотноупакованная (к.ч. 12 а-модификация), при высокой — объемно-центрированная кубическая (к.ч. 8 -модификация). При таких больших координационных числах имеющихся валентных электронов недостаточно для образования обычных валентных связей, поэтому у них реализуется металлическая связь, основанная на обобществлении валентных электронов всеми атомами. Отличительная особенность металлической связи — отсутствие направленности, вследствие чего в кристалле возможно значительное смещение атомов без нарушения связи. Этим объясняется высокая пластичность всех трех металлов, в первую очередь их а-модификаций. Наиболее пластичен титан, гафний наиболее тверд и труднее поддается механической обработке.,/Образование о.ц.к. структур у -модификаций, по всей вероятности, связано с некоторой локализацией связи появление определенной направленности, характерной для ковалентной связи, объясняет большую твердость и меньшую пластичность -модификаций титана, циркония и гафния. [c.211]

    Черные металлы — чугун и сталь, занимая исключительно важное место в промышленности и технике, часто служат объектом анализа. Число элементов, которое может находиться в железных сплавах, очень велико, чем и определяется большое разнообразие их физико-механических и химических свойств. Наряду с давно применяемыми легирующими элементами (такими, как хром, никель, кобальт, ванадий, вольфрам), в практику черной металлургии и в последние десятилетия вошли новые компоненты (например, редкоземельные, цирконий, гафний, титан, тантал, ниобий), добавки которых позволяют получать черные металлы с еще более ценными качествами. Кроме того, растет внимание и к ряду элементов, присутствие которых даже в малых количествах, может существенно изменять качество металла. Сюда относятся мышьяк, медь, олово, сурьма, алюминий, цинк и др. Содержание этих компонентов также контролируется, особенно в высококачественных сталях. [c.473]


    Химические свойства элементов подгруппы титана характеризуют их металлический характер. В ряду напряжений все три элемента расположены левее водорода. Титан вытесняет водород из кислот-неокислителей (например, НС1)  [c.116]

    Близость химических свойств обусловливают их геохимическое сходство, общее участие в геологических процессах и совместное нахождение в одних и тех же минералах. Из положения ниобия и тантала в периодической системе вытекает их геохимическое родство со многими элементами, особенно с титаном, редкоземельными металлами, ураном, торием, цирконием. [c.39]

    При поляризации катода до значений, не превышающих предельного тока, происходит одна реакция - неполное восстановление хромовой кислоты (Сг " + Зё-> Сг " ). При повышенной концентрации серной кислоты скорость реакции восстановления хромовой кислоты для разных металлов различна, что объясняется физико-химическими свойствами оксидной пленки, возникающей на катоде. На поверхности титана она менее пориста, чем на стали, что вызывает сдвиг потенциала реакции неполного восстановления хромовой кислоты в сторону отрицательных значений. На титане водород выделяется при ф = -0,626 В, а на стали при ф = -0,78 В. [c.92]

    ЧЕТЫРЕХХЛОРИСТЫЙ ТИТАН Физико-химические свойства [c.732]

    Свойства титана и его соединений. Титан — химический элемент IV группы Периодической системы Д. И. Менделеева, относится к первому ряду переходных элементов, является элементом d-группы. [c.119]

    Свойства. Металлический титан по своему серому ц-вету весьма сходен с железом на воздухе он легко сгорает, образуя белую двуокись титана он также соединяется с азотом, -образуя нитрид. Металл достаточно тверд, чтобы чертить стекло он очень хрупок на холоду, но при красном калении он ковок и может быть вытянут в проволоку. По своим химическим свойствам он сходен с церием, торием, цирконием и гафнием. Чрезвычайно большие количества двуокиси титана применяются для производства белых кра-сок титановые краски отличаются большой кроющей способностью и хорошо противостоят действию воздуха. [c.591]

    В качестве элемента сравнения был выбран титан, так как его физико-химические свойства близки к. таковым для V и N1 и, кроме того, спектр титана богат линиями, которые могут быть использованы в качестве линий сравнения. [c.183]

    Несмотря на все большее расширение применения алюминиевых сплавов для морских сооружений, все же остается актуальной проблема изыскания конструкционных материалов, физико-химические свойства которых отвечали бы требованиям, предъявляемым нефтегазопромысловым сооружениям при эксплуатации в открытом море. Наиболее перспективный материал для этой цели — титан. Исследования некоторых титановых сплавов в Черном море на различных глубинах (7, 27, 42, 80 м) показали высокую стойкость исследованньгх сплавов на всех глубинах, и их скорость коррозии не превышала 0,01 г/(м2 ч), в то время как нержавеющие стали типа 18-9 были подвержены питтингу глубиной 2,5 мм после экспозиции в течение 21 мес. С увеличением глубины погружения образцов коррозионная стойкость повьииалась, что объясняется понижением температуры и более низкой концентрацией кислорода. Титан обладает очень высокой стойкостью не только в обычных морских средах, но также в загрязненных водах, в морской воде, содержащей хлор, аммиак, сероводород, двуокись углерода, в горячей морской воде. Титан выдерживает очень высокие скорости потока морской воды После 30-суточных испытаний при скорости потока 36,Ь. i, с бьип лолч чены следующие результаты  [c.25]

    По химическим свойствам Т. близок к РЗЭ (лантаноидам), а также к элементам второй подгруппы IV группы периодической системы — титану, цирконию, гафнию. В соединениях Т, почти исключительно проявляет степень окисления +4. На воздухе при 20 °С Т. окисляется незначительно. В дистиллированной воде покрывается пленкой оксида ТЬОз, предохраняю щей его от дальнейшей коррозии оксид также получается при сгорании Т, на воздухе, С парами воды Т. при 200—600 °С [c.263]

    Физические и химические свойства. В свобо.тном состоянии титан—типичный металл, по внешнему виду напоминающий сталь. В обычных условиях поверхность титана покрыта тонкой оксидной пленкой, лишающей ее зеркального блеска. Кристаллический титан существует в двух полиморфных видоизменениях низкотемпературном— (i и высокотемпературном — р. а-Титан и.меет плот-ноупакованную гексагональную, а р-титан — объемноцентрирован-ную кубическую решетку. Температура полиморфного превращения a-Ti=rip-Ti 882,5°С (АЯ = 3,69 кДж/моль). [c.261]

    Высокие антикоррозионные свойства сплавов титана позволяют их применять в морском судостроении и химическом машиностроении. Титан применяется также для раскисления и деазотирования й али. Ппбявт тнтяна к стали и цветным металлам улучшают их физико-химические свойства и сопротивление коррозии. Металлические детали, покрытые титаном, приобретают большую поверхностную прочность. [c.369]

    Какие химические свойства соединений титана(IV) проявляются н этих реакциях Существует ли в кристаллической решетке и в растворе катион оксотитана(IV) TiO + (старое название титанил-ион)  [c.132]

    Элементы титан Ti, цирконий Zr, гафний Hf и курчатовий Ки составляют IVB группу Периодической системы Д. П. Менделеева. Курчатовий — радиоактивный элемент, наиболее долгоживущий изотоп —2 Ки (период полураспада 65 с). Титан по химическим свойствам отличается от циркония, гафния и курчатовия (проявление вторичной псриодичностп). [c.233]

    Другая важная проблема — разработка методов обнаружения и определения микроколичеств элементов. Физические и химические свойства материалов часто зависят от присутствия именно микрокомпонен-тов. Титан и хром долгое время считали хрупкими металлами, которые нельзя ковать и прокатывать, однако недавно было установлено, что эти металлы в очищенном состоянии пластичны и что их хрупкость обусловлена незначительными примесями посторонних элементов. Германий является одним из основных материалов для изготовления полупроводниковых приборов в радиотехнической промышленности, однако он утрачивает свои полупроводниковые свойства, если на десять миллионов атомов германия приходится более одного атома фосфора, мышьяка или сурьмы. Самая незначительная примесь гафния в металлическом цирконии делает последний непригодным для использования в атомной промышленности. Ничтожные примеси титана, ванадия, висмута и некоторых других металлов в сталях значительно изменяют их механические и электрические свойства. Почти все элементы периодической системы входят в очень небольших количествах в состав тканей растений и живых организмов, причем каждый элемент играет впол- [c.16]

    Цирконий близок к титану по химическим свойствам. Однако цирконий значительно дороже титана и менее пластичен (технологичен), поэтому его коррозионная стойкость важна в тех случаях, когда можно использовать и другие его свойства (например, в атомной энергетике). Цирконий имеет хорошую стойкость в восстановительных средах (коррозионностоек в соляной кислоте любых концентраций при комнатной температуре, а до 20%-ной концентрации — также и при температуре кипения), однако в окислительных средах цирконий стоек лишь в присутствии ионов хлора. [c.52]

    Алкилбериллий, содержащий металл с наименьшим ионным радиусом, в присутствии треххлористого титана дает самый высокий выход изотактического полипропилена при больших скоростях реакции полимеризации. На степень изотактичности и скорость реакции оказывают влияние также стерические и химические свойства заместителей металлорганического соединения. При полимеризации пропилена в присутствии триметилалюминия образуется полимер с большим содержанием атактической фракции, чем при применении триэтилалюминия. Стереоспецпфичность, однако, падает и при высших алкилах. Если один алкил алюминия заменить на галоген, то скорость реакции снижается в ряд Р>С1>Вг>1 в том же порядке увеличивается молекулярный вес. Натта [28] в результате проведенных опытов по полимеризации п"ропилена с треххлористым титаном в среде толуола пришел к заключению, что стереорегулярность падает в ряду  [c.40]

    Основные химические свойства. Водород реагирует с четыреххлористым титаном при 500—800° С. с образованием фиолетового Т1С1з [161  [c.62]

    По отношению к нятиокисям ниобия ц тантала некоторыми авторами применяется термин земельные кислоты . Подобно тому, как торий обычно рассматривается совместно с группой редкоземельных металлов, так и титан иногда относят к группе земельных кислот на том основании, что эти три элемента, помимо того, что тесно связаны друг с другом в природе, обладают некоторыми общими химическими свойствами, играющими важную роль в аналитической химии. Характерной особенностью этих металлов является сильная склонность их солей к гидролизу, что дает возможность отделять их от многих других элементов. Природные титанаты, свободные от ниобия и тантала, представляют собой обычное явление ниобаты и танталаты также встречаются без титана, но как будто неизвестен в природе ниобат, совершенно свободный от тантала, так же как и танталат, не содержащий ниобия. В немногих, редко встречающихся минералах фосфор (V), мышьяк и сурьма частично замещают ниобий и тантал. Вольфрам и олово в тантало-ниобиевых минералах встречаются часто, но всегда в малых количествах. [c.663]


Смотреть страницы где упоминается термин Титан химические свойства: [c.235]    [c.238]    [c.965]   
Общая химия в формулах, определениях, схемах (1996) -- [ c.453 ]

Общая химия в формулах, определениях, схемах (0) -- [ c.453 ]

Общая химия в формулах, определениях, схемах (1985) -- [ c.453 ]

Общая химия в формулах, определениях, схемах (0) -- [ c.453 ]

Неорганическая химия Том 2 (1972) -- [ c.68 , c.69 , c.73 , c.84 , c.85 ]




ПОИСК





Смотрите так же термины и статьи:

Белинская Ф.А., Макарова Е.Д. К вопросу о строении и ионообменных свойствах гидроокиси титана. 2. Физико-химическое исследование структуры образцов гидроокиси титана, получаемых щелочным гидролизом в системе

Классификация, химический состав и физихо-.механичсскпе свойства сплавов титана

Краткие сведения о физических и химических свойствах титана

Титан, свойства

Химические свойства гидрида титана



© 2024 chem21.info Реклама на сайте