Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Платина гексафторид

Рис. 6. Реактор для получения гексафторида платины. Рис. 6. Реактор для <a href="/info/1022051">получения гексафторида</a> платины.

    Вместе с тем уже известны и химические соединения благородных газов с ионной связью. Их удалось получить, используя для отрыва электронов от их атомов гексафторид платины PtPe — газ темно-красного цвета, являющийся даже более сильным окислителем, чем фтор. Уравнение реакции взаимодействия ксенона с гексафторидом платины можно представить так  [c.161]

    Б a p T Л e T, Ю x a. Взаимодействие ксенона с гексафторидом платины и другие аналогичные реакции, в кн. Соединения благородных газов, Атомиздат, М., 1965. [c.424]

    Соединение с гексафторидом платины [c.263]

    Соединения Р<1 (VI) и (VI). Платина, подобно ряду других 5(1-элементов, образует гексафторид РАГе. Это летучее кристаллическое вещество (т.пл. 61°С, т. кип. 69°С) темно-красного цвета, получают его сжиганием платины во фторе. [c.675]

    Чистый гексафторид палладия, если его можно получить, должен быть менее устойчив, чем гексафторид родия. Последний является наименее устойчивым из всех известных гексафторидов. Гексафторид платины диссоциирует труднее, чем гексафторид родия, поэтому, вероятно, гексафторид золота легче получить п с ним проще работать, чем с гексафторидом палладия. [c.384]

    Гексафторид платины является единственным гексафторидом переходных элементов третьего ряда, который можно окислить кислородом [9 . [c.386]

    Лучше всего конструировать отдельные вакуумные линии для каждого из летучих фторидов, поскольку загрязнение наиболее реакционноспособного фторида может происходить путем его фторирования другим фторидом металла, отложенным в вакуумной линии. Так, пары гексафторида платины фторируют нелетучий тетрафторид плутония при комнатной температуре с образованием летучего гексафторида [51]  [c.401]

    Большинство, металлов также подвергается коррозии. Никель пассивируется слоем хемосорбированного фторида никеля, а алюминий — пленкой окиси алюминия, оба металла и их сплавы (монель, инконель, легкие сплавы) оказались превосходными конструкционными материалами для оборудования заводов. Малоуглеродистые стали, медь, золото, серебро, платина и индий в этом отношении были бы посредственными материалами. На газодиффузионных заводах малоуглеродистые стали (в случае их применения) покрываются слоем никеля (электролитически или химически) на всех поверхностях, контактирующих с гексафторидом урана. Загрязнения тппа осадков сульфидов, силикатов пли карбидов реагируют с гексафторидом урана и газообразными продуктами его разложения — F2 и НЕ в первую очередь [3.14, 3.18, 3.205]. [c.123]

    При взаимодействии платины с фтором получен гексафторид платины (VI) PtFe — темно-красные летучие кристаллы. [c.407]


    Для фторирования элементарным фтором при очень высоких температурах можно использовать следующий метод тонкую проволоку фторируемого металла припаивают к достаточно толстым токоподводам, входящим внутрь кварцевого или металлического реактора. Реактор эвакуируют, осушают и затем наполняют фтором. Реакцию осуществляют пропусканием через проволоку тока большой силы. Выделяющееся при этом тепло инициирует реакцию, которая протекает далее самопроизвольно [84]. Эта методика была применена для первоначального синтеза гексафторида платины [84, 85]. Другой способ применяли для синтеза фторидов кислорода. При умеренных температурах кислород не реагирует с фтором и термическую активацию системы Оа—Fa осуществить трудно. Однако при пропускании смесей фтора и кислорода через электроразрядную трубку при низких температурах и давлениях образуются O3F2 и O2F2 [86—88]. При спи- [c.331]

    Со фтором получено соединение Р1Ее — гексафторид платины. Вещество оказалось более сильным окислителем, чем фтор. Это — настолько энергичный акцептор электронов, что в состоянии отнять электрон, т. е. окислить, даже кислород О , и инертный элемент Хе (энергия ионизации молекулярного кислорода О. рапна 12,2 эв, а ксенона Хе->- Хе е составляет 12,13 эв). [c.554]

    Изучение свойств гексафторида платины — летучего вещества, образующего красно-коричневые пары — привело к важным последствиям в развитии неорганической химии. В I960 г. Бартлетту, работавшему в Ванкувере (Канада) удалось показать, что PtFe может отщеплять фтор с образованием пентафторида, который затем диспро-порционирует  [c.157]

    По аналвгии с синтезом 0+ [Р1Рв1 из кислорода и гексафторида платины, учитывая ионизационные потенциалы кислорода и ксенона, был син- [c.637]

    Соединения инертных элементов. Из всех инертных элементов наименьшие величины потенциалов ионизации имеют криптон, ксенон и радон (см. табл. 30). Это и явилось предпосылкой получения их соединений со фтором и кислородом. В наибольшей степени изучены соединения ксенона. В 1962 г. канадский химик Бартлетт впервые синтезировал соединение ксенона Хе[Р1С1в1 из газообразных гексафторида платины и ксенона при комнатной температуре  [c.403]

    В то же время известны химические соединения инертных элементов с ионной связью. Например, сильный окислитель — гексафторид платины Р1Ро обладает свойством отнимать электроны у атомов ксенона. Получающийся гексафтороплатинат ксенона Хе+[Р1Рв1" имеет ионную пространственную кристаллическую решетку. [c.404]

    Интересны свойства гексафторида платины Р1Ро — активнейшего акцептора электронов. Этот фторид окисляет кислород до иона О с образованием гексафтороплатината(У) диоксигенила  [c.433]

    Гексафторид — бесцветная жидкость т. кип. 19,5°, т. пл. 2,5° пл. 8,419 г/см . Очень реакционноспособен. Из металлов его действию сопротивляется только платина. Гигроскопичен, легко гидролизуется, дымит на воздухе. Сухой фторид не разъедает стекла, но влажный разъедает легко. Растворяясь в щелочах и фторидах щелочных металлов, дает двойные соединения. С рядом органических веществ образует устойчивые окрашенные комплексы. Окситетрафторид WOF4 получается обменной реакцией из окситетрахлорида, а также фторированием металла в присутствии кислорода и окислителей  [c.235]

    При умеренных температурах и давлениях, не превышающих нескольких атмосфер, выбор материала контейнера для фтора не слишком ограничен. При умеренных температурах подходящими конструкционными материалами могут служить кварц, сталь, никель, монельметалл и медь. При повышенных температурах предпочитают применять никель или платину. Реакции с участием фтора при высоких давлениях можно проводить лишь при условии, что реактор соответствующим образом экранирован, и все операции осуществляют при помощи дистанционного управления. Общие проблемы работы с элементарным фтором подробно обсуждали Ландау и Розен [82] и Кеди [83]. Приемы работы в лабораторных условиях с элементарным фтором и реакционноспособными фторидами были разработаны сотрудниками Аргоннской национальной лаборатории. Подробности можно найти в экспериментальных разделах статей, посвященных получению гексафторидов металлов (см. табл. И), и в обзорной статье Вайнштока [15]. [c.331]

    За исключением палладия, все платиновые металлы известны в форме гексафторидов. Однако поскольку гексафториды имеют тенденцию к диссоциации на низший фторид и фтор, причем эта тенденция возрастает с увеличением атомного номера в каждом ряду переходных элементов, постольку последние члены каждого ряда можно получить только быстрой закалкой продукта фторирования при температуре жидкого воздуха. Термическая устойчивость умзньшается быстрее во втором ряду переходных элементов по сравнению с третьим. Гексафторид платины, по-видимому, легко диссоциирует на фтор и низший фторид, подобно гексафториду рутения. Несмотря на то что точных данных о теплоте образования этих гексафторидов нет, изучение инфракрасных спектров и спектра Рамана показывает, что в каждом ряду сила связи уменьшается. В табл. 3 приведены основные частоты колебаний [c.383]


    Окислительная способность гексафторидов платиновых металлов, как было отмечено выше, заметно возрастает с увеличением атомного номера в каждом ряду переходных элементов. Таким образом, гексафториды платины, рутения и родия являются наиболее сильными окислителями. Все эти гексафториды окисляют окись азота с образованием солей нитрозония [9, И]. Так, соединение NO OsFe можно получить в результате гомогенной реакции в газовой фазе. Гексафториды платины и иридия в гомогенной газовой среде образуют соли (N0 )2MFe [10, И]. Гексафторид платины является единственным гексафторидом платиновых металлов (относящихся к третьему ряду переходных элементов), который способен окислять кислород и ксенон с образованием соответственно 0+ PtF и Xe (PtFe) [9, 67], хотя гексафториды рутения и родия также окисляют ксенон [66, 67]. Первые потенциалы ионизации для молекулярного кислорода и атомарного [c.412]

    Ион 0J - диоксигенил - впервые получен в 1962 г. при реакции кислорода с гексафторидом платины  [c.258]

    Соединения благородных газов. Со времени открытия благородных газов (гл. 1, разд. 4) их считали химически неактивными и не образующими соединений элементами. Позже появился ряд соединений , в которых молекулы инертных газов были захвачены молекулярными кристаллами типа бензохино-на (так называемые клатраты), но их соединения в строгом смысле этого слова не были известны. В 1962 г. Бартлетт при реакции кислорода с гексафторидом платины получил ионное соединение [02]+[Р1Рб] . Исходя из близости первых потенциалов ионизации 1 Ог (12,70 эВ) и Хе (12,13 эВ), он предположил возможность осуществления такой же реакции для Хе и впервые получил соединение благородного газа Хе(Р1Рв) (, где X = , 2. В дальнейшем было синтезировано много подобных соединений, которые состояли в основном из ксенона, фтора и кислорода, а из соединений других инертных газов досто-рерно обнаружен только бесцветный кристаллический фторид [c.265]

    Соединение с гексафторидом платины Хе-Р1Р, 440,39 пр, или мн. желт. эксн 14 [c.263]

    Последующие работы Бартлетта позволили установить, что ксенон в зависимости от условий реакции образует два соединения с гексафторидом платины XePtFe и Хе(Р1Рб)г при гидролизе их получаются одни и те же конечные продукты. [c.83]

    После второй мировой войны американские исследователи занялись изучением гексафторидов, и особенно гексафторида урана, который используется для разделения изотопов и В 1960 г. были синтезированы гексафториды платиновых металлов. Канадский химик Н. Бартлетт, исследуя гексафторид платины Р1Ре, установил в 1961 г., что это вещество обладает более сильными окислительными свойствами, чем элементарный фтор. Оно дает соединение с кислородом 02(Р1Рб), где кислород имеет положительную валентность его молекула ионизировалась — Ог" (РГРе) Возникла мысль, а нельзя ли подействовать таким окислителем на инертные газы, и в частности на ксенон и у кислорода, и у ксенона почти одинаковое сопротивление отрыву электронов. [c.129]


Смотреть страницы где упоминается термин Платина гексафторид: [c.618]    [c.657]    [c.491]    [c.156]    [c.216]    [c.317]    [c.396]    [c.675]    [c.312]    [c.397]    [c.401]    [c.403]    [c.412]    [c.44]    [c.44]    [c.44]    [c.83]    [c.83]    [c.87]    [c.669]   
Химия (2001) -- [ c.258 ]

Основы общей химии Том 3 (1970) -- [ c.201 , c.202 ]




ПОИСК







© 2025 chem21.info Реклама на сайте