Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Микроэлемент гальванический

    Металлический алюминий служит в основном для производства сплавов. Сплавы алюминия менее устойчивы к коррозии из-за возникновения гальванических микроэлементов в местах включений примесей. Алюминий идет на производство кабелей, фольги, зеркал, серебристой краски. Способность алюминия восстанавливать металлы из оксидов при высоких температурах послужила основой метода алюмотермии, т. е. восстановления тугоплавких металлов, например хрома или марганца, из их оксидов  [c.152]


    Коррозия металлов и сплавов рассматривается, согласно электрохимической теории, как процесс разрушения, вызванный действием огромного количества микроэлементов — гальванических пар. [c.21]

    В этих условиях корродирующий технический цинк представляет собой совокупность гальванических микроэлементов, в каждом из которых железо является положительным полюсом, а анодно растворяющийся цинк — отрицательным. Коррозию такого технического металла можно на этом осг овании рассматривать как результат действия локальных гальванических элементов. [c.496]

    Совмещение катодных и анодных реакции типично для коррозии чистых металлов и амальгам их более или менее полное пространственное разделение — для коррозии технических металлов. Меньшая стойкость технических металлов по сравнению с чистыми, а также изменение характера коррозионных разрушений во многом связаны с деятельностью гальванических микроэлементов основной металл — включение. [c.498]

    Существуют два варианта метода определения пористости наложение на испытуемую поверхность фильтровальной бумаги, пропитанной соответствующим реактивом, и заливка этим реактивом (с добавкой желатина) испытуемого участка, трудно доступного для наложения фильтровальной бумаги. Этот метод основан на образовании в порах покрытия гальванических микроэлементов, в которых растворяющимся электродом — анодом — является основной металл или подслой. Для определения пористости покрытий медью, никелем, оловом, свинцом, хромом, нанесенных на стальную поверхность, применяют обычно раствор железосинеродистого калия, с которым ионы железа, возникающие в результате действия гальваноэлементов, образуют в порах окрашенное соединение — турнбулеву синь. По количеству синих пятен, приходящихся на единицу поверхности, судят о степени пористости покрытия. [c.447]

    Наряду с описанной формой течения коррозии металлов, обусловленной образованием микроэлементов, электрохимическая коррозия металлов может происходить и без образования гальванических пар, в особенности на поверхности более однородных металлов. Значение этой формы взаимодействия было выяснено лишь в последнее время. [c.457]

    Электрохимическая коррозия возникает при наличии в непосредственной близости двух различных металлов, окруженных раствором, проводящим электрический ток, — электролитом. Получается своего рода гальванический элемент между обоими металлами возникает электрический ток, и металл, являющийся анодом, станет постепенно разрушаться. Этот процесс будет происходить также и при наличии одного вида металла, если он обладает кристаллической структурой, содержит различные элементы, посторонние примеси и загрязнения, имеет шероховатую неровную поверхность. Хотя возникающие при электрохимической коррозии электрические токи сами по себе весьма слабы и создающие их гальванические микроэлементы ничтожны по своим размерам, их суммарное действие и его большая продолжительность могут весьма сильно разрушать металл и ослаблять его прочность. [c.172]


    Таким образом, наличие примесей малоактивного металла ускоряет разрущение более активного металла под действием среды за счет возникновения гальванических микроэлементов. Скорость коррозии тем больше, чем сильнее различаются электродные потенциалы металлов, т. е. чем дальше они расположены друг от друга. Кроме того, скорость коррозии повышается при увеличении концентрации электролита и повышении температуры. [c.173]

    Гальванические микроэлементы образуются не только при контакте двух различных металлов, но и при наличии примесей, неоднородностей в составе металла (сплава), а также при наличии в металлическом изделии любых участков, отличающихся друг от друга какими-либо параметрами температурой, давлением, плотностью, состоянием поверхности и т, п. Даже предыстория обработки играет роль в возникновении коррозии. Наличие деформированного и недеформированного участков приводит к возникновению разности потенциалов, и деформированный участок корродирует сильнее недеформированного. 27—38. В согнутую под углом ( 90°) стеклянную трубку [c.380]

    Металлы, применяемые в технике, почти всегда содержат примеси других металлов. При соприкосновении с раствором электролита система из основного металла и металла примеси образует ряд гальванических микроэлементов. [c.191]

    Де ля Рив полагал, что причиной электрохимической гетерогенности поверхности, в результате которой возникают пространственно разделенные катодные и анодные участки коррозионных микроэлементов, является присутствие в металле примесей других более благородных металлов. Эти включения совместно с окрун<ающим чистым металлом образуют так называемые местные или микро гальванические локальные элементы, в которых чистый металл служит анодом, а включения — катодами. [c.411]

    Поверхность, покрытую раствором травителя, можно рассматривать и как многоэлектродный гальванический элемент, состоящий из большого числа соединенных между собой микроскопических электродов. Участки поверхности с наибольшим числом нарушенных связей (границы зерен-, блоков посторонних фаз, выходы дислокаций и т. п.) имеют низкую энергию активации, играют роль анодов микроэлементов и растворяются в травителе. Участки с менее на рушенной структурой, имеющие более положительный электродный потенциал (более высокую АЕд), являются катодами. Катоды не разрушаются, они лишь передают электроны анода молекулам или ионам травителя. [c.102]

    Таким образом, при электрохимической коррозии (как в случае контакта разнородных металлов, так и в случае образования гальванических микроэлементов на поверхности одного металла) поток электронов направлен от более активного металла (с меньшей величиной электродного потенциала) к менее активному проводнику (с большей величиной электродного потенциала) и более активный металл корродирует. Скорость коррозии тем больше, чем дальше расположены друг от друга в ряду стандартных электронных потенциалов металлы, из которых образовался гальванический элемент (гальваническая пара). На скорость коррозии влияет и характер раствора электролита. Чем меньше его pH, а также чем больше содержание в нем окислителей, тем быстрее протекает коррозия. Значительно возрастает коррозия с ростом температуры. [c.252]

    Таким образом, поверхность корродирующего металла, согласно теории микроэлементов, можно уподобить совокупности большого количества отдельных гальванических пар, замкнутых накоротко. Роль внешней цепи играет сам металл, по которому электроны от анодных участков перетекают к участкам с более положительным местным значением потенциала. В самом электролите происходит перенос ионов анионы движутся к анодным участкам, катионы — по направлению к катодным участкам. Схема коррозионного процесса, обусловленного [c.248]

    При термической обработке и особенно при прокатке в металле возникают напряжения. Искаженные участки поверхности металла характеризуются большими величинами свободной энергии и более интенсивно посылают свои ионы в раствор. В таких условиях на поверхности металла может произойти пространственное разделение катодных и анодных участков. Иными словами, возникают своего рода гальванические элементы, которые называются микроэлементами. В отличие от обычных они коротко замкнуты через поверхность металла и работают непрерывно, В стали, например, карбидные включения играют роль катодов, а кристаллики твердого раствора углерода в железе — роль анодов, т. е. на них идет растворение железа. Заметим, что коррозия развивается и на однородных металлических поверхностях. Однако возникновение локальных микроэлементов существенно ускоряет процесс коррозии. [c.273]

    На совершенно однородной поверхности катодная и анодная реакции могут протекать в одной и той же точке (гомогенный механизм). При малейшей неоднородности поверхности катодные и анодные процессы пространственно разделяются, локализуясь каждый на тех участках, которые для них энергетически более выгодны (гетерогенный механизм, см. рис. 89, б). В подавляющем большинстве случаев коррозия протекает по гетерогенному механизму. При этом процесс коррозии можно рассматривать как результат работы коррозионных гальванических элементов, в которых участки металлической поверхности, обладающие в данной среде более положительным потенциалом, играют роль катодов, а более отрицательные — роль анодов. Катодные и анодные участки микроскопических размеров — так называемые микроэлементы — образуются вследствие химических и физических неоднородностей поверхности. [c.210]


    В большинстве случаев электрохимической коррозии высоколегированных хромистых и хромоникелевых сталей граница зерен является анодом гальванического микроэлемента по отношению к катодной матрице и подвергается селективному растворению. Скорость анодного растворения зависит от разности электродных потенциалов "граница зерен-зерно" и связана с размером зерен, аустенитной матрицы,-. . [c.85]

    Одним из путей обеспечения удаления с поверхности деталей влаги и инородных частиц является подбор текстуры и смачиваемости поверхностей. При грубой текстуре поверхности детали происходит ее интенсивное коррозионное разрушение. Это объясняется тем, что к участкам металла в углублениях поступает кислорода меньше, чем к участкам на гребнях. В связи с этим при взаимодействии нейтральной или щелочной среды, когда процесс коррозии металла идет с кислородной деполяризацией, на участках с большой концентрацией кислорода значение положительного потенциала выше, чем на участках с меньшей концентрацией кислорода. Вследствие дифференциальной аэрации возникает коррозионный микроэлемент. Кроме того, на детали собираются и удерживаются влага, пыль, грязь, остатки перерабатываемых и транспортируемых продуктов, которые, в свою очередь, могут способствовать размножению микроорганизмов и протеканию процессов биокоррозии. При грубой текстуре затрудняется нанесение качественных гальванических покрытий. [c.33]

    Ток, протекающий в системе металл—электролит — металл, называется локальным, а сама система представляет собой своеобразный короткозамкнутый гальванический элемент. Теория, объясняющая механизм коррозии работой многочисленных макро- и микроэлементов, создана швейцарским ученым Де ла Ривом в 1830 году и впоследствии дополнена Акимовым и Эвансом. Теория локальных элементов убедительна, доступна и удобна тем, что позволяет использовать модели гальванических элементов при изучении качественных закономерностей коррозии. Полученные результаты в виде коррозионных диаграмм потенциал — ток, называемых диаграммами Эванса, или поляризационных коррозионных диаграмм Шульгина потенциал— плотность тока очень наглядны. [c.17]

    На эффективную работу гальванических элементов, в том числе коррозионных микроэлементов, основное влияние оказывают три фактора  [c.21]

    Предложенное описание коррозионных процессов справедливо лишь в том случае, если поверхность металла равнодоступна как для анодной, так и для катодной реакций. Для металла с идеально однородной поверхностью (например, для жидкого металла) выполнение такого условия не подлежит сомнению. Для обычных твердых (даже очень чистых) металлов из-за неизбежной неоднородности их поверхности выполнение указанного условия неочевидно. Это явилось причиной появления на первых этапах развития учения об электрохимической коррозии металлов представлений, получивших название теории микроэлементов. Теория предполагала, что катодное восстановление окислителя (например, выделение водорода) может происходить только на некоторых участках поверхности корродирующего металла, а растворение металла возможно на других участках, так что существует пространственное разделение катодной и анодной реакций, позволяющее рассматривать коррозионный процесс как функционирование большого числа короткозамкнутых гальванических элементов . [c.86]

    Первым на катоде будет выделяться металл, имеющий наибольший окислительный потенциал, затем последовательно все другие металлы с потенциалом более положительным, чем у алюминия (—1,67 в). Если металл анода содержит включения другого металла, между ними образуется гальванический микроэлемент. Если металл включения в аноде будет иметь потенциал меньший, чем у меди, и, следовательно, выполнять роль катода, то медь будет выделяться на аноде, что приведет к ошибке в анализе. Причиной отложения меди на аноде может являться плохой контакт между анодом и катодом. Вследствие этого ток будет ослаблен или прекратится совсем и система будет представлять собой просто алюминиевый стержень, опущенный в раствор, содержащий ионы меди. В этой системе алюминий, имеющий отрицательный потенциал, будет терять электроны, а ионы меди, имеющие положительный потенциал, приобретать их и выделяться в элементарном состоянии на алюминиевой пластинке  [c.360]

    Электрокоррозия. Окислительно-восстановительный процесс, сопровождающийся окислением данного металла и восстановлением окислителя на его поверхности, называется коррозией этого металла. Коррозия может быть химической и электрохимической. Если металл взаимодействует с сухим, т. е. лишенным влаги, газом (кислородом, сернистым газом, сероводородом, хлористым водородом и т. п.) или с жидким неэлектролитом (бензином, смолой и т. п.), то коррозия называется химической. Коррозия называется электрохимической, когда при соприкосновении металла с влажным воздухом или с растворами электролитов образуются непрерывно действующие гальванические микроэлементы, в которых более активные составные части металла служат отрицательными электродами- (анодами) и поэтому окисляются, а менее активные — положительными электродами (катодами), на которых окислители восстанавливаются. В случае совершенно чистых металлов активными участками (анодами) являются более мелкие кристаллики, ребра, вершины или более значительные дефекты решетки, а менее активными (катодами) — более крупные кристаллики, грани и менее значительные дефекты кристаллической решетки. Например, в сталях катодными участками являются различные карбидные включения, а анодными — сам металл (железо). [c.310]

    Наиболее распространенным видом коррозии является электрохимическая коррозия. Все метал дические детали и конструкции, находящиеся в соприкосновении с водой, землей, атмосферой и различными растворами, подвергаются электрохимической коррозии. Электрохимическая коррозия включает два самостоятельных процесса анодный — переход металла в раствор в виде гидратированных ионов с оставлением эквивалентного количества электронов в металле — и катодный — восстановление того или иного окислителя, называемого деполяризатором. При электрокоррозии в нейтральных средах деполяризатором чаще всего служит растворенный в жидкой фазе кислород, а при электрокоррозии в кислотах — ионы водорода. Например, при соприкосновении стального слитка с атмосферным воздухом, который всегда содержит некоторое количество водяного пара, на поверхности слитка работает множество накоротко замкнутых гальванических микроэлементов  [c.312]

    Размеры электродов этих элементов, условия их работы и т. п. иные, чем у гальванических элементов, применяемых в качестве источников постоянного тока. Вследствие этого деятельность микроэлементов имеет целый ряд особенностей. [c.75]

    Причина возникновения микроэлементов на поверхности металла, погруженного в электролит,— это разность потенциалов между отдельными участками его поверхности. Эта разность потенциалов возникает в результате как структурной неоднородности металлов, так и различного состояния их поверхности (например, из-за различной степени пассивности). Различие в составе электролита, соприкасающегося с металлом, например разная концентрация растворенных солей и газов, также может вызвать возникновение разности потенциалов. Многие другие факторы (различная скорость движения электролита по поверхности металла, разный доступ кислорода воздуха) в некоторых случаях служат причиной образования гальванических микроэлементов. [c.75]

    Коррозия железа и стали в лресной и морской воде, а также во влажном воздухе, коррозия цинка во многих нейтральных средах Протекает с кислородной деполяризацией. В атом случае катодные участки микроэлементов следует рассматривать как кислородные электроды, на которых идет процесс восстановления кислорода, т. е. взаимодействие атомов кислорода с электронами и водой с образованием ионов гидроксила. Для процессов с кислородной деполяризацией характерно возникновение гальванических пар, называемых парами дифференциальной аэрации. В таких элементах те участки поверхности металла, куда кислород попадает легче, становятся катодами, а поверхность металла, к которой кислород поступает труднее, становится анодом. Между анодной и катодной частями возникает ток и начинается коррозия, при которой разрушается анодная часть, куда кислород поступает в мецьших количествах (подводные части металлоконструкций, глубокие трещины и т. д.). [c.270]

    Изучение влияния различных факторов на работу гальванических элементов, удобно производить на так называемой модели микроэлемента . [c.76]

    В этом случае на поверхности металла возникает множество микроскопических гальванических элементов — микроэлементов и субмикроэлементов, при работе которых растворяется один из компонентов сплава, что приводит к постепенному разрушению поверхностных слоев металла. Электродные потенциалы зависят не только от вида металла, но в меньшей степени и от кристаллической. модификации его, от различных дефектов в решетке кристалла, от напряжения во внутренней структуре. Поэтому все виды неоднородности металла, в том числе и вызываемые такими методами обработки, как ковка, прокат, волочение и пр., могут в той или иной форме и степени влиять на течение коррозионных процессов. Вследствие указанных причин будут возникать химические цепи. [c.455]

    При элект юхимической коррозии возникает гальванический микроэлемент. Более активный металл выполняет функции анода. Он заряжается от жцательно и растворяется. Менее аетииный металл выполняет функции катода и заряжается положительно. На нем происходит восстановление ка ионов среды. [c.174]

    Электрохимическую коррозию вызывают главным образом примеси других металлов и неметаллических веществ или неоднородность поверхности. Согласно теоргт электрохимической коррозии в этих случаях при соприкосновении металла с электролитом (электролитом может быть влага, адсорбируемая из воздуха) на его поверхности возникают гальванические микроэлементы. При этом металл с более отрицательным потенциалом ра.зрушается — ионы его переходят в раствор, а электроны переходят к менее активному металлу, на котором пронсходит восстановление нонов водорода (водородная деполяризация) или восстановление растворенного в воде кислорода (кислородная деполяризация). [c.162]

    Электрохимическую коррозию вызывают главным образом загрязнения, примеси в металле или неоднородность его поверхности. Согласно теории электрохимической коррозии в этих случаях при соприкосновении металла с электролитом (электролитом может быть влага, адсорбируемая из воздуха) на его поверяности возникает множество гальванических микроэлементов. При этом анодами являются частицы метялла, катодами — загрязнения, примеси. Аноды растворяются, на катодах происходит связывание электронов. [c.179]

    Существует несколько методов определения пористости покрытия, из которых самым доступным является химический, основанный на окрашивании участков, где имеются поры. Ири этом в порах покрытия образуются гальванические микроэлементы, в которых растворяющимся электродом — анодом — является основной металл или подслой. Для определения пористости медных, никелевых, оловянных, свинцовых, хромистых покрытий, нанесенных на стальную поверхность, применяют обычно раствор железосинеродистого калия, с которым ионы железа, возникающие в результате действия гальваноэлементов, образуют в порах окрашенное соединение — турнбулеву синь. [c.338]


Смотреть страницы где упоминается термин Микроэлемент гальванический: [c.281]    [c.241]    [c.213]    [c.270]    [c.230]    [c.251]    [c.235]    [c.281]    [c.71]    [c.84]    [c.135]    [c.115]    [c.324]   
Основы физической и коллоидной химии Издание 3 (1964) -- [ c.255 ]




ПОИСК





Смотрите так же термины и статьи:

Микроэлементы

гальванические



© 2024 chem21.info Реклама на сайте