Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Локальная кинетика с перемешиванием

    Математическое описание процессов, протекающих в реакторах о перемешиванием в объеме, уравнениями локальной кинетики можно составить даже на основании данных пассивного эксперимента (не говоря уже о случаях, когда мы располагаем данными активного эксперимента). Для процессов, протекающих в реакторах без перемешивания в направлении потока, а также в реакторах периодического действия выявление локальной кинетики по сравнению с изучением химической кинетики в ее обычном понимании значительно упрощается. [c.43]


    Выявление локальной кинетики на модели реактора нужно проводить с учетом того аппаратурного оформления, которое принято или предполагается принять для промышленного реактора. Последнее обстоятельство особенно важно, поскольку, как следует из рассмотрения математических моделей для процессов, протекающих с перемешиванием в объеме и без перемешивания в направлении потока, они различны по характеру изменения концентраций в реакционной зоне. [c.165]

    Для действующего производства экспериментальное изучение локальной кинетики процессов в реакторах с перемешиванием Зв объеме, как правило, широко доступно. Его можно выполнить по данным пассивного или активного эксперимента и вне зависимости от того, в какой среде (гомогенной или гетерогенной) протекает процесс в промышленном реакторе. [c.166]

    Рассмотрение вопроса о выявлении локальной кинетики по экспериментальным данным начнем с процесса, протекающего адиабатически в стационарном слое катализатора, что подчеркивает отсутствие перемешивания в направлении потока. В этом случае характер распределения температуры по длине слоя катализатора можно легко установить при помощи многоточечной термопары. Допустим, что распределение температуры характеризуется кривой, представленной па рис. 1-2. Эта кривая пока- [c.184]

    Уравнение локальной кинетики, выведенное для процесса в каскаде реакторов, в общем случае наиболее полно отражает кинетику процесса, так как при этом информация о нем увеличивается с возрастанием числа аппаратов в каскаде. Как уже указывалось, для сбора исчерпывающей информации о процессе в реакторе без перемешивания в направлении потока рекомендуется модель аппарата представлять в виде каскада, получая таким образом информацию о процессе по длине реакционной зоны. [c.189]

    В дальнейшем определяют порядок реакции и коэффициент К, а также зависимость константы скорости от факторов, характеризующих процесс. Это можно выполнить по рекомендациям, изложенным применительно к изучению локальной кинетики процессов, протекающих без перемешивания в направлении потока. [c.190]

    Чтобы выявляемая локальная кинетика для процесса в реакторе без перемешивания в направлении потока отражала условия протекания процесса в промышленном реакторе, необходимо предъявлять известный минимум требований к модели реактора. Так, длина реакционной зоны (или слоя катализатора) для модели должна быть той же, что и для промышленного реактора. При этом линейные скорости по сечению зоны будут в обоих случаях одинаковы, что обусловит одинаковые гидродинамические условия протекания процесса. [c.183]


    Таким образом, можно сделать вывод, что для двухфазных систем, модель по жидкости которых соответствует полному перемешиванию, идеальному вытеснению либо диффузии, а по пару - полному перемешиванию или идеальному вытеснению, зависимость между локальной эффективностью по пару (газу) и объемным коэффициентом массопередачи остается неизменной. То есть различие в структуре модели по жидкости, характеризующей конструкцию тарелки, не влияет на кинетику массопередачи, однозначно определяемую локальной эффективностью по пару (газу) через объемный коэффициент массопередачи, а влияет на эффективность (к.п.д.) тарелки. [c.160]

    Дело в том, что обычно постановке вопроса о масштабировании и автоматизации того или иного химического процесса всегда предшествует выполнение экспериментальных работ, на основании которых выявляют и рекомендуют технологический режим. Другими словами, выбирают давление, температуру, исходные концентрации реагирующих веществ и степень их превращения устанавливают, необходимо ли проводить процесс с применением катализатора или без него и наконец в каком аппарате (с перемешиванием в реакционном объеме или без перемешивания в направлении потока). Выбранный режим обусловлен регламентом, которым оговариваются допустимые отклонения параметров от заданного режима. Таким образом, как-бы заранее задается ограниченная (локальная) область, в которой должен протекать процесс. В рассматриваемом случае совершенно не обязательно знать кинетику для широкого диапазона изменения параметров, что в значительной степени облегчает получение необходимых кинетических данных для составления математического описания процессов. [c.21]

    Кпд колонны-отношение числа теоретич, тарелок п к числу тарелок Лд, практически установленных в колонне, т. е. П = п/п . Среднюю эквивалентную высоту теоретич. ступени контакта (теоретич. тарелки) = Hjn, где Я-высота слоя насадки (в м), используют чаще всего для описания кинетики М. в насадочных аппаратах и пленочных аппаратах. Локальный (или точечный) кпд г о представляет собой отношение разности концентрации пара (газа), поднимающегося в данной точке тарелки, и среднего состава пара аза), поступающего на эту тарелку, к разности равновесной концентрации пара, отвечающей составу жидкости, покидающей эту тарелку, и среднего состава пара, поступающего на нее. Кпд тарелки Лт. или кпд Мерфри, представляет собой отношение изменения среднего состава пара (газа) или жидкости на тарелке к изменению состава при достижении равновесной концентрации в результате контакта фаз на тарелке. По значениям Ло и Лт оценивается эффективность тарелки. Соотношение между ними определяет степень смещения жидкости на тарелке. При полном перемешивании жидкости и пара значения Ло и Лт Д каждой фазы совпадают. [c.658]

    В основу всех двухфазных моделей заложено раздельное рассмотрение влияния гидродинамики и кинетики на показатели каталитического процесса. Такой подход оправдан далеко не всегда. Процесс, сопровождающийся существенным изменением объема, протекая в плотной части КС, должен привести к локальному изменению скорости газа и, следовательно, к изменению гидродинамической обстановки в слое. Образование и подъем пузырей определяют интенсивность перемешивания твердых частиц и, как следствие, температурный режим работы реактора. Частицы катализа- [c.278]

    Проведенный анализ быстрых реакций полимеризации показал, что отмеченные при математическом моделировании эффекты тождественны наблюдаемым экспериментально на примере полимеризации изобутилена [2]. Сравнение расчетных и экспериментальных данных указывает на возникновение градиента концентрации и температур, т.е. быстрые реакции с локальным вводом катализатора протекают по отдельным зонам в виде факела с различными температурными и кинетическими параметрами. Важным следствием неизотермичности процесса является повышение полидисперсности продукта по средним молекулярным массам, т.е. ухудшение его свойств. Наличие факела в быстрых процессах полимеризации, в частности изобутилена, определяет специфические методические и практические приемы их проведения. Так, внешнее термостатирование не является эффективным и ограничивает использование дилатометрии и многих других экспериментальных методов исследования кинетики процесса. Лишь низкие концентрации катализатора (меньше 10 моль/л) при условии эффективного перемешивания реакционной массы могут обеспечить изотермический характер процесса и получение полимерного продукта с ММР, близким к расчетному. [c.142]

    Во всех приведенных выше соотношениях полагалось, что величина скорости роста кристаллов (>и или к ) одинакова по всему объему кристаллизатора. По всей вероятности такое предположение достаточно близко соответствует действительному процессу в аппаратах полного перемешивания суспензии, когда концентрационные и температурные условия процесса во всех точках рабочего объема практически одинаковы. Однако более общий анализ показывает, что имеются некоторые причины, вследствие которых рост индивидуальных кристаллов может оказаться неодинаковым вследствие неоднородности параметров процесса по рабочему объему. Во-первых, в реальных аппаратах локальные значения концентраций и температуры суспензии не бывают совершенно одинаковыми и частицы в процессе своего случайного перемещения по всему объему попадают в зоны с разным пересыщением и температурой. Кроме того, относительная скорость движения отдельных кристаллов и жидкой фазы раствора также носит случайный характер, что при диффузионной кинетике роста должно приводить к случайному распределению величины скорости роста частиц к около некоторого ее среднего значения. По некоторым данным [9] флуктуации объемной скорости роста кристаллов могут достигать 50 % от ее среднего значения. [c.169]


    Анализ роста биомассы в любом проточном биореакторе, работающем в непрерывном режиме, включает определение характеристик потока в биореакторе и кинетики происходящих в нем биологических процессов. Характеристики потока во всех реакторах непрерывного действия могут быть описаны по типу распределения времени пребывания субстрата в реакторе. Двумя крайними случаями распределения времени пребывания являются реактор идеального вытеснения и реактор полного смешения. При работе в однофазной системе можно представить существование как этих крайних случаев, так и множества промежуточных ситуаций. Однако дать ответ на вопрос о типе перемешивания в биореакторах, в которых происходят микробные процессы, гораздо сложнее. Пока есть возможность работать с дискретно диспергированными в жидкости клетками, в условиях идеального крупномасштабного перемешивания, существенные градиенты будут иметь место только в малых локальных зонах. Поэтому в случае бактериальных суспензий в биореакторах [c.105]

    Таким образом, уравнения (5.161) и (5.162 предстамяют собой обобщенную форму записи локальных и общих характеристик эффективности массопередачи в перекрестном токе на основе модели функций распределения времени пребывания в многокомпонентных и бинарных смесях. Обобщенная форма записи матриц [Еу] и [Emv] по уравнениям (5.161) и (5,162) позволяет также достаточно просто рассчитывать эффективность массопередачи в перекрестном токе в многокомпонентных смесях при любой сложной гидродинамической обстановке в аппарате и на контактном устройстве как на основе секционной, так и диффузионной моделей продольного перемешивания потоков, используя при этом накопленный опыт изучения кинетики и гидродинамики процессов массопередачи-в бинарных смесях. [c.257]

    Кинетика выгорания пропан-бутана в кварцевой трубе диаметром 75 мм представлена на рис. 2. Газ сжигали в кипящем слое динасовой крошки (3—5 мм). Данные газового анализа и измерений температуры слоя по высоте камеры показывают, что выгорание газового топлива завершается на высоте 200—240 мм над решеткой. В районе очага горения наблюдается характерный максимум температуры. Величина максимума и его положение над решеткой зависят от организации перемешивания газа и воздуха в слое. В рассматриваемых опытах на высоте 80—100 мм наблюдали максимум содержания СО, что, вероятно, обусловлено промежуточной реакцией горения. Следует отметить, что ход газообразования, показанный на рис. 2, несколько отстает от температуры слоя. В соответствии с температурным полем можно было бы ожидать большее содержание СО2, чем замеренное. Это можно объяснить тем, что во-доохлаждаемый газоотборник вызывал локальное охлаждение слоя, что замедляло скорость реакции горения в точке отбора. Таким образом, можно предположить, что выгорание топлива завершается на еще меньшей высоте, нежели это отмечено в результате газового анализа. [c.265]

    Во-нервых, уравнения конвективно-диффузионного массопереноса без источников линейны относительно концентраций и допускают корректное осреднение по объему. В то же время уравнения локального равновесия гомогенных реакций, а в общем случае и уравнения массопереноса с источниками, определяемыми кинетикой реакций, пелипейпы отпосительпо концентраций. Следовательно, они допускают корректное осреднение по объему только в случае, если локальные значения концентраций компонентов в представительном объеме мало отличаются от средних по объему значений концентраций этих компонентов, т. е. если в системе есть механизм интенсивного перемешивания. В пористой среде такое перемешивание может происходить при переходе от одной норы к другой через узкую шейку или нри пересечении трещин. Тем пе мепее, если расстояние между точками пересечения трещин сравнимо с размерами зоны смешения, а так- [c.25]


Смотреть страницы где упоминается термин Локальная кинетика с перемешиванием: [c.529]    [c.383]    [c.134]   
Химические реакторы как объекты математического моделирования (1967) -- [ c.166 ]

Химические реакторы как объект математического моделирования (1967) -- [ c.166 ]




ПОИСК





Смотрите так же термины и статьи:

Кинетика локальная

Локальность



© 2025 chem21.info Реклама на сайте