Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диффузионная модель потока с продольным перемешиванием

    Диффузионная модель потока с продольным перемешиванием [c.634]

    Движущая сила массопередачи имеет максимальное значение при работе аппарата в режиме идеального вытеснения число единиц переноса и высота аппарата в этом случае минимальны. В реальных аппаратах движение фаз может в значительной степени отличаться от модели идеального вытеснения. Степень отклонения реальной структуры потоков от модели идеального вытеснения (степень продольного перемешивания) для колонных аппаратов чаще всего оценивается на основе диффузионной модели коэффициентами продольного перемешивания. [c.53]


Рис. 111-9. Схема диффузионной модели продольного перемешивания потока в полубесконечном аппарате. Рис. 111-9. Схема диффузионной модели продольного перемешивания потока в полубесконечном аппарате.
    При составлении диффузионной модели принимают, что перемешивание фаз описывается теми же уравнениями, что и диффузия вдоль потока. Основными параметрами модели являются коэффициенты продольного Е и радиального Ог перемешивания. Неидеальность структуры потоков может быть приблизительно описана и через эффективный коэффициент диффузии [33, 60, 61]  [c.43]

    В режиме идеального смешения концентрации реагентов постоянны по всему объему аппарата. Непрерывный переход от резина идеального вытеснения к режиму идеального смешения можво проследить в рамках диффузионной модели, решая уравнение (VI.14) или (VI.15) с граничными условиями (VI.27) и оценивая изменение степени превраш ения и статистических характеристик распределения при уменьшении числа Пекле. Режиму идеального вытеснения соответствует предельный случай Ре оо, а режиму идеального смешения — Ре 0. Все промежуточные режимы иногда определяют как режимы неполного смешения. Согласно сказанному выше, диффузионная модель далеко не всегда пригодна для описания работы реакторов в режиме неполного смешения. При расчет трубчатых реакторов х)на оказывается справедливой только ври больших числах Пекле, когда гидродинамический режим реактора приближается к режиму идеального вытеснения при этом расчет реактора в приближении идеального вытеснения обеспечивает обычно достаточную для технологических целей точность результатов, и влияние продольного перемешивания потока может быть учтено как малая поправка. При расчете реакторов малой протяженности, где продольное перемешивание особенно заметно и могут наблюдаться сильно размазанные функции распределения, необходимо уже учитывать реальную физическую картину процессов переноса вещества, так как диффузионная модель в этих условиях не применима. [c.213]

    При т- оо ячеечная модель с обратным потоком переходит в диффузионную модель с продольным перемешиванием. Ячеечная модель с обратным потоком применяется для тарельчатых секционированных и насадочных аппаратов, в которых наблюдается заброс вещества в сторону, обратную направлению основного потока. [c.242]


    В промышленности находят применение также периодические реакторы, являющиеся видоизменением режима работы реактора перемешивания. Наряду с указанными моделями потоков различают диффузионную, характеризующуюся наличием продольного перемешивания (однопараметрическая модель) и радиального перемешивания (двухпараметрическая модель), ячеечную, представляемую в виде последовательности элементарных моделей, и более сложные модели типа комбинированных, циркуляционных. Соответствие выбранной модели реальному объекту устанавливается на этапе проверки адекватности. [c.21]

    Точный расчет представляет значительные трудности и требует детального экспериментального изучения гидродинамики потоков. В настоящее время проведение такого рода расчетов не представляется возможным. В связи с этим в последние годы успешно развивались приближенные методы расчета массопередачи с учетом продольного перемешивания. Наибольшее развитие и применение получили методы расчета на основе диффузионной и ячеечной моделей. [c.231]

    На изменении начальных и граничных условий (способа введения в аппарат индикатора) при решении уравнения (16 ) и основаны все способы определения продольного перемешивания, использующие диффузионную модель потока [18]. [c.100]

    Однопараметрическая диффузионная модель. Условия физической реализуемости однопараметрической диффузионной модели выполняются прн поршневом потоке, если в направлении его существует продольное перемешивание, описываемое уравнениями, аналогичными уравнениям молекулярной диффузии. В направлении, перпендикулярном направлению движения, для однопараметрической диффузионной [c.174]

    Более строгое рассмотрение задачи с учетом как диффузии в твердой фазе, так и эффекта продольного перемешивания было проведено в работе [238]. При этом принималось обычно используемое в анализе других противоточных непрерывных процессов допущение, что продольное перемешивание в аппарате колонного типа можно описать диффузионной моделью потока [239] (см. главу 4, 9). Поскольку при глубокой очистке веществ содержанпе примеси в твердой фазе хи жидкой фазе г/ мало (х 1, г/ 1), в выражении для скорости массообмена на границе раздела фаз влиянием нелинейных членов можно пренебречь п принять, что V = [c.228]

    Комбинированную модель можно представить как каскад последовательно соединенных диффузионных ячеек с рециркуляционными потоками между ними (рис. П-Б). Перемешивание внутри диффузионных ячеек характеризуется коэффициентом продольного перемешивания Ей- Параметрами рассматриваемой модели являются число Пекле Ре = и1/Е (как у диффузионной модели), коэффициент рециркуляции (как у рециркуляционной моде- [c.28]

    Диффузионной моделью описывается такой поток, частицы которого, двигаясь в продольном направлении, частично смешиваются (происходит обратный заброс частиц потока) как в продольном, так и поперечном направлениях как бы диффундируя. Поэтому такие модели носят название диффузионных или моделей с продольным и поперечным (радиальным) перемещением. Интенсивность такого перемешивания характеризуется коэффициентом продольного ( )г.) или радиального перемешивания (1>/г) или безразмерным параметром — числом Пекле [c.25]

    Из анализа работ [14, 15, 23, 70, 71, 78—87] следует важный вывод при достаточной длине аппарата продольное рассеяние вещества как за счет турбулентной и молекулярной диффузии, так и из-за неравномерностей в структуре потока можно аппроксимировать одномерной диффузионной моделью с общим коэффициентом продольного перемешивания в соответствии с уравнением [c.35]

    Рнс. 111-10. Схема диффузионной модели продольного перемешивания потока для ограниченного с обеих сторон аппарата [к уравнениям (111.42) и (111.43)]. [c.50]

    Для диффузионной модели продольного перемешивания этот метод особенно удобен применительно к широко используемым в лабораторных исследованиях аппаратам, представляющим собой ограниченный с обеих сторон канал. Если импульс трассера вводится в рассматриваемый поток на входе в аппарат, а отклик регистрируется на выходе из аппарата, то С-кривая описывается уравнением (111.44). Воспользовавшись теоремой Вейерштрасса, [c.59]

    Модель проточного аппарата с продольным перемешиванием. Принимается, что отклонение от потока идеального вытеснения вызывается встречным потоком, описываемым теми же соотношениями, что и диффузионный, но коэффициент диффузии D заменяется эффективной величиной — коэффициентом продольного перемешивания Dn. [c.98]

    Однопараметрическая диффузионная модель соответствует гидродинамической структуре поршневого потока с перемешиванием в продольном направлении. При этом принимается, что продольное перемепшвание может быть описано уравнениями, аналогич- [c.219]


    При выборе однопараметрической диффузионной модели принимаются следующие допущения концентрация вещества является непрерывной функцией пространственной и временной координат концентрация во всех точках сечения, ортогонального направлению движения, одинакова скорость потока и коэффициент продольного перемешивания не изменяются по длине и поперечному сечению потока. [c.220]

    Продольное перемешивание жидкой фазы. Структура потока жидкой фазы в барботажном аппарате достаточно хорошо описывается диффузионной моделью, разработанной на основании полуэмпирической теории продольного рассеяния веш,ества. [c.272]

    Продольное перемешивание в пульсационных колоннах. Для оценки продольного перемешивания в ситчатых пульсационных колоннах используется диффузионная и ячеечная модели с обратным потоком. Максимальное значение коэффициента продольного перемешивания достигается при минимальной удерживающей способности колонны и частоте пульсации / , определяемой по уравнению [127] [c.466]

    Поршневой поток с продольным перемешиванием (диффузионная модель) [c.106]

    Структура типа поршневой поток с продольным перемешиванием (диффузионная модель). Эта структура является обобщением рассмотренной выше модели идеального вытеснения, когда на механизм конвективного переноса накладывается механизм диффузионного переноса. При этом диффузионный механизм рассматривается как модельный механизм, который характеризуется некоторым эффективным коэффициентом диффузии В. В частном случае это может быть собственно молекулярная диффузия, однако чаще с помощью этого механизма моделируются эффекты неравномерности профиля скоростей по сечению аппарата, влияние турбулентной диффузии и т. п. [c.111]

    Распределение времени пребывания оценивалось по второму моменту (дисперсия распределения), на основе значения которого рассчитывались величины критерия Пекле для продольного перемешивания. Расчет критерия Пекле производили, исходя из диффузионной модели перемешивания, с граничными условиями, соответствующими ограниченному каналу [7]. При двухфазном потоке скорость сплошной фазы рассчитывалась с учетом удерживающей способности. [c.60]

    В основу диффузионной модели положено допущение о том, что для математического описания процесса перемешивания потока может быть использовано уравнение, аналогичное уравнению диффузии в движущейся гомогенной среде. Значит, эта модель исходит из приближенной аналогии между перемешиванием и диффузией. Согласно диффузионной модели, всякое отклонение распределения времени пребывания частиц потока от распределения при идеальном вытеснении, независимо от причины, вызвавшей это отклонение, считают следствием продольного пере- [c.124]

    Аппараты с продольным перемешиванием (одноразмерная модель с осевым перемешиванием, однопараметрическая диффузионная модель). Перемешивание в потоке может происходить даже в тех случаях, когда в аппарате нет сцециального перемешивающего устройства. Перемешивание может быть обусловлено встречными диффузионными потоками, различием скорости движения вещества в разных точках поперечного сечения конвекционного потока, появлением турбулентных вихрей . Так как строгий теоретический расчет всех эффектов в отдельности довольно сложен, принимают, что отклонение от потока идеального вытеснения вызывается встречным потоком, описываемым теми ше соотношениями, что и диффузионный, но величину D, заменяют эффективной величиной — коэффициентом продольного перемешивания DiL (его определение см. в главе П1). В этой модели учитывается и тепловой поток за счет теплопроводности. Расчет диффузионного (gio) и теплового (д ) потоков проводится по законам Фика и Фурье  [c.57]

    Для описания упрошенной диффузионной модели потока с осесим-мефичным поршневым движением материала с учетом продольного и поперечного перемешивания частиц используют уравнение сохранения массы в следуюшем виде  [c.221]

    В соответствии с диффузионной моделью продольное перемешивание считается статистически эквивалентным явлению диффузии, происходящему в направлении потока, которое описывается обобщенным законом Фика, Величина коэффициента диффузии в направлении потока D2 является мерой значимости явления пере-Л1ешивания, [c.120]

    Предложены и проанализированы [71, 72] двухмерные диффузионные модели, учитывающие наряду с продольной турбулентной диффузией наличие поперечного перемешивания и градиента скорости в ллоокости, перпендикулярной направлению потока. [c.31]

    Диффузионная модель. Нестационарный перенос вещества в потоке описывается уравнением (11.12). Для однонаправленного процесса переноса, осуществляемого за счет турбулентной диффузии и осевого перемешивания (что оценивается введением коэффициента продольного перемешивания Е ), уравнение (11.12) имеет вид  [c.47]

    Количественные характеристики структуры потока, определяемые интенсивностью продольного перемешивания (параметрами модели), используются для расчета тепло- и массообменных аппаратов и химических реакторов. При таких расчетах различные модели могут привести к практически одинаковым результатам, если эти модели формально адекватны друг другу и потоку в аппарате, т. е. совпадают функции распределения времени пребывания. При формальной адекватности можно, установив эквивалентные соотношения между параметрами сложной и более простой модели, вести расчет аппарата по уравнениям более простых моделей. В связи с этим рассмотрим возможность аппроксимации двухпараметрической комбинированной модели структуры потока более простой — однопараметрической диффузионной модедью. Для этой цели необходимо установить эквивалентную связь между параметрами обеих моделей. [c.95]

    Результаты сопоставления представлены на рис. IV-1. Как видно, уравнение (IV.49) дает значения Реэф, справедливые в областях Ре/п 2, л 0,5 (или f l) и Ре/п 1, х 0,66 (или f 2). Следовательно, в этих областях уравнение (IV.49) отражает вклад обратных потоков и степени перемешивания внутри ячеек (секций) колонного аппарата в явление продольного перемешивания. (Следовательно, уравнение (IV.49) можно использовать для обработки экспериментальных данных по продольному перемешиванию в секционированных колоннах на основе диффузионной модели. [c.96]

    В работе [21] на основе диффузионной модели структуры потока предложен метод определения параметров продольного перемешивания по скачку концентраций на входе сплошной фазы Метод основан на преобладающем продольном перемешивании в аппарате, поскольку в питающей трубке оно пренебрежимо мало. Это означает, что в сечении входа значение. коэффициента продольного перемешивания резко изменяется, приводя к скачку концентраций во входящей фазе. Скачок, оцениваемый числом единиц переноса 7 , зависит от фактора массообмена F = mVyjVx и числа Пекле сплошной фазы Рес и в меньшей степени — от числа Пекле дисперсной фазы Pe . Предложена [21] номограмма, позволяющая одновременно определять значение Рес и Ред по значениям F и Т. [c.202]

    Прежде чем перейти к рассмотрению последних экспериментальных работ, полезно остановиться на некоторых теоретических моделях, предложенных для описания диффузии в псевдоожиженных слоях. Две такие модели уже упоминались. Перемешивание твердых частиц по одной из них объяснялось наличием восходящего потока твердых частиц, обусловленного подъемом пузырей а по другой — диффузионным эффектом безотносительно к его природе. Эти модели в некоторой мере объясняют результаты опытов по перемешиванию твердых частиц, полученные Джил-лилендом с сотр. Необходимо отметить, что модели, основанные на прямотоке газа в непрерывной и дискретной фазах, не могут объяснить экспернментально установленного обратного перемешивания, если онн игнорируют продольное перемешивание в одной или обеих фазах. [c.266]

    Шюгерль полагает, что продольное перемешивание определяется поперечной неравномерностью скоростей потока. Расчеты показали что измеренная интенсивность радиального перемешивания больше, чем соответствующая простой диффузионной прямоточной модели. В этом случае вряд ли правомерно определять скорости обмена газом по измеренному распределению времени пребывания, интерпретируя данные в соответствии с простой двухфазной прямоточной моделью. Аналогичное замечание может быть также, видимо, сделано относительно модели противотока с обратным перемешиванием. [c.303]

    В двухпараметрической диффузионной модели, так же как и однонараметрической, процесс описывается уравнениями молекулярной диффузии. Отличие моделей состоит в том, что в двухпараметрической диффузионной модели учитывается перемепшвание потока как в продольном, так и в радиальном направлении. Таким образом, модель характеризуется двумя параметрами коэффициентом продольного Ь и радиального перемешивания. Принимается, что коэффициенты продольного и радиального перемешивания не изменяются соответственно по длине и сечению аппарата. Для случая одномерного движения потока в аппарате цилиндрической формы с постоянной по длине и сечению скоростью V уравнение двухпараметрической диффузионной модели имеет вид [c.220]

    Данные, приведенные в таблице, позволяют сделать ряд интересных выводов относительно гидродинамической структуры потоков в порах осадка. Из таблицы видно, что числа Ре (графа 10), определенные для проточных пор осадка гидродинамическим методом, в среднем на порядок превышают значения Ре, рассчитанные по кривым вымывания примеси из осадка (графа И). Такая значительная разница в числах Ре объясняется тем, что расчет Ре по индикаторным кривым отклика на основе однопараметрической диффузионной модели не предполагает деления порового пространства осадка на объем водопроводяпщх, крупных проточных пор и объем тупиковых и не отражает явления переноса примеси. С увеличением давления промывки числа Ре, определенные гидродинамическим методом, уменьшаются. Уменьшение Ре обусловлено более быстрым ростом коэффициента продольного перемешивания В по сравнению с увеличением скорости потока промывной жидкости V (графы 2, 4 и 12 таблицы). [c.401]

    Для построения полной диаграммной сети диффузионной модели в псевдоэнергетических переменных необходимо учесть конвективный перенос субстанции. При наличии только конвективного переноса (в отсутствие продольного перемешивания) связная диаграмма для элементарной ячейки аппарата была построена выше (при рассмотрении псевдоэнергетической диаграммной сети поршневого потока)  [c.114]

    Построим теперь динамическую модель процесса абсорбции в насадочном аппарате, учитывающую продольное перемешивание фаз. В реальных аппаратах продольное перемешивание фаз объясняется рядом причин прежде всего различием скоростей движения фаз в разных точках аппарата и, кроме того, турбулентной диффузией фаз, уносом частиц одной фазы (например жидкости) потоком другой фазы (газа). Подробное теоретическое описание продольного перемешивания, учитывающее все перечисленные факторы, в настоящее время отсутствует. Для описания структуры потоков в аппарате обычно используют упрощенные модельные представления. Наиболее распространенными из них являются ячеечная и диффузионная модели. В данной книге для описания структуры потоков используем вторую из этих моделей, согласно которой перемешивание фаз в аппарате аналогично процессу диффузии. В диффузионных процессах при наличии градиента концентрации какого-либо вещества возникает поток этого вещества, называемый диффузионным потоком, который пропорционален градиенту концентрации. Поскольку процесс перемешивания аналогичен процессу диффузии, можно считать что и в насадочном аппарате возникает поток вещества определяемый законом Фика / = = —pZ)gгad0, который в одномерном случае имеет вид / = [c.17]

    Попав в область с другой скоростью осевого переноса, вещество остается там некоторое время / >. Это время можно трактовать как время релаксации осевого диффузионного потока, в течение которого этот поток определяется не локальным осевым градиентом концентрации, а молярным адвективным переносом [8]. Связь между потоком и градиентом концентрации в этом случае не локальна и не мгновенна система обладает некоторой памятью [8,9]. Это свойство эредитарности (наследственности) становится существенным, когда время релаксации оказывается не малым в сравнении с другими характерными временами, в течение которых в системе происходят существенные изменения (химические превращения, пребывание в реакторе и т.п.). В этом слз чае можно говорить о новом (дисперсионном) механизме продольною перемешивания как о процессе слу чайного блуждания вдоль оси аппарата, и в этом слу тае возможен переход к дисперсионной (волновой) модели массопереноса [8]. [c.10]

    Можно рассматривать аппарат состоящим из ряда последовательно соединенных ячеек, в каждой из которых происходит полное перемешивание (ячейковая модель). Часто считают, что продольное перемешивание может быть описано уравнением диффузии, в которое вместо коэффициента диффузии вводится коэ( ициент продольного перемешивания (диффузионная модель). Этот коэффициент учитывает на только диффузию в осевом направлении, но также диффузию в радиальном направлении, обусловленную неравномерностью распределения потоков по поперечному сечению аппарата. Коэффициент продольного перемешивания больше коэффициента турбулентной диффузии, но с увеличением скорости, потока разница между этими коэффициентами сглажи- [c.238]


Смотреть страницы где упоминается термин Диффузионная модель потока с продольным перемешиванием: [c.294]    [c.27]    [c.240]    [c.220]    [c.222]    [c.160]   
Смотреть главы в:

Общий курс процессов и аппаратов химической технологии -> Диффузионная модель потока с продольным перемешиванием




ПОИСК





Смотрите так же термины и статьи:

Диффузионная модель перемешивания

Диффузионный поток

Перемешивание модели



© 2025 chem21.info Реклама на сайте