Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Процессы массопередачи

    Процесс массопередачи подобен процессу теплопередачи. По аналогии с основным уравнением теплопередачи можно записать основное уравнение массопередачи. [c.53]

    Гидродинамические основы процессов массопередачи изложены в книге [c.147]

    Чаще всего равновесная кривая отличается от прямой и расчет процесса массопередачи не может вестись по уравнению (178). [c.179]


    Способы, осуществления процессов массопередачи 77 [c.77]

    СПОСОБЫ ОСУЩЕСТВЛЕНИЯ ПРОЦЕССОВ МАССОПЕРЕДАЧИ [c.77]

    РАСЧЕТ ПРОЦЕССОВ МАССОПЕРЕДАЧИ [c.179]

    Способы, осуществления процессов массопередачи 81 [c.81]

    В условиях стационарного процесса массопередачи скорость межфазного перехода равна скорости подвода экстрагируемого вешества к границе раздела фаз (в первой фазе) и скорости отвода его от границы раздела фаз (во второй фазе). Эту зависимость можно выразить уравнениями [c.262]

    Определенный вклад в степень извлечения при экстракции вносит концевой эффект, т. е. массопередача в период образования капель. Здесь также существенным является отдельное рассмотрение процесса массопередачи в объеме лимитирующей фазы. Особенности массо-и теплообмена в период образования капель и оценка величины эффекта при лимитирующем сопротивлении дисперсной или сплошной фаз рассмотрены в разделе 4.5. [c.168]

    А —движущая сила процесса массопередачи, равная разности между рабочей (фактической) концентрацией распределяемого вещества в фазе и равновесной, т. е. такой концентрацией, которая установилась бы в данной фазе, если бы она находилась в равновесии с другой фазой  [c.53]

    Способы осуществления процессов массопередачи 83 [c.83]

    Способы осуществления процессов массопередачи 85 [c.85]

    Обобщим введенные ранее безразмерные концентрации (5.23), (5.24) применительно к процессу массопередачи в колонных аппаратах при наличии продольного перемешивания  [c.232]

    Коэффициент массопередачи зависит также от фазы, по концентрации распределяемого компонента в которой определяется движущая сила процесса массопередачи. [c.53]

    Рабочая линия устанавливает связь между концентрациями в контактирующих неравновесных фазах. Чтобы знать направление процесса массопередачи, необходимо располагать данными о равновесных концентрациях распределяемого вещества в контактирующих фазах. [c.73]

Рис. 22. Графическое процесса массопередачи. а —абсорбция б — десорбция Рис. 22. <a href="/info/912585">Графическое процесса</a> массопередачи. а —абсорбция б — десорбция
    В ряде случаев скорость одной из стадий (диффузии или химической реакции) настолько мала, что она определяет скорость процесса в целом. Аналогичное положение характерно для некоторых процессов теплопередачи или массообмена. Определяющую стадию можно обнаружить, экспериментально изучая влияние различных переменных на скорость самого процесса. Так, например, если суммарная скорость процесса быстро возрастает с увеличением температуры в соответствии с законом Аррениуса, то определяющей стадией является химическая реакция. В других случаях скорость процесса может изменяться с изменением величины поверхности раздела фаз или расходов веществ в соответствии с закономерностями, характерными для процесса массопередачи. [c.174]


    В уравнении (111.14) концентрации выражены в относительных мольных или массовых единицах. Строго говоря, только при таком способе выражения составов расходы фаз, характеризуемые расходами инертных компонентов, можно считать постоянными. Мольные, массовые, объемные расходы обычно меняются в процессе массопередачи. Однако при малых концентрациях распределяемого компонента эти изменения невелики, В этом случае, если линия равновесия линейна при выражении концентраций в мольных или массовых долях, либо в кг/м , уравнением (111.14) можно пользоваться для расчета числа теоретических ступеней, подставляя в него соответственно мольные,. массовые или объемные расходы фаз. Для жидкостной экстракции при условии, что [c.46]

    Подобно тому, как, исходя из коэффициентов массоотдачи, можно найти суммарный коэффициент массопередачи, точно также на оснований высоты единицы массоотдачи может быть определена высота единицы массопередачи. Другими словами, соотношения, подобные уравнениям (VI, 2) и (VI, 3), можно получить и для высоты единицы массопередачи через эту величину выражены все современные экспериментальные данные о процессе массопередачи. [c.181]

    Искомыми величинами при расчете массообменных колонн являются их диаметр и рабочая высота. Диаметр колонны определяется объемной скоростью потоков фаз, а для расчета ее высоты необходимо совместно решить уравнения скорости (Процесса массопередачи и материального баланса. Эти ура внения применительно к межфазному обмену одним компонентом (однокомпонентная [c.206]

    Отмеченная ситуация характерна, например, для процессов гидрокрекинга нефтяных фракций. При этом степень превращения в большей степени зависит от давления, температуры, концентраций компонентов реагирующей системы, и в меньшей — от поверхности межфазного обмена и коэффициентов процессов массопередачи. [c.241]

    Гетерогенная модель. Если скорость процесса массопередачи мала или сравнима со скоростью реакции Гел, то равновесие между газом и жидкостью не достигается нигде в объеме аппарата. Поэтому для расчета степени превращения уравнения (5.13) и (5.14) должны быть решены одновременно. В этом случае конверсия строго зависит от величины межфазной поверхности а, и выбор условий проведения процесса более сложен, чем в первом случае. Типичными примерами таких ситуаций являются процессы абсорбции, сопровождающиеся химической реакцией абсорбируемого компонента в жидкой фазе. [c.241]

    При недостаточной плотности орошения и неправильной организации подачи жидкости [3] поверхность насадки может быть смочена не полностью, а часть смоченной поверхности практически не участвует в процессе массопередачи. [c.106]

    Учет влияния на протекание процесса массопередачи таких явлений, как брызгоунос в тарельчатых колоннах, перемешивание и байпасирование потоков, показан на примере расчета процесса ректификации (см. гл. VII). [c.112]

    Харт [16] по аналогии с процессами массопередачи разработал приближенную модель реакторного устройства, введя понятие о высоте реакторной единицы. Однако модель эта носит формальный характер и пе получила значительного распространения [17—19]. [c.119]

    В кипящем слое реакция протекает в изотермических условиях благодаря мгновенному выравниванию температуры, интенсифицируются процессы массопередачи и теплонередачи и упрощается аппаратурное оформление процесса. [c.273]

    Совместное проведение химических реакций с некоторым разделением реакционной смеси в одном и том же аппарате составляет предмет довольно много-числепны.ч исследований, а также является одним из технологических вариантов проведения процессов на практике. В качестве предмета исследования совмещенный процесс рассматривается в основном с позиций взаимного влияния массопереноса и химической реакции. Эти вопросы изучает макрокинетика и теория процессов массопередачи. Как технологический вариант проведения процессов в практике совмещенный процесс используется потому, что часто оказывается наиболее выгодным и сравнительно простым. Рациональное использование явлений переноса массы в момент проведения химической реакции обеспечивает до-Аолнительные возможности процессу как в кинетическом, так и в термодинамическом аспектах. Условия равновесия в системе с химическим взаимодействием компонентов могут быть рассмотрены в рамках термодинамики гетерогенных систем. [c.186]

    При прочих равных условиях (р, Т и составы) движуп1ая сила процесса массопередачи определяется расходом абсорбента, что выражается наклоном рабочей линии к оси абсцисс. [c.74]


    Рассматривается конвективный массо- и теплоперенос при малых и средних значениях Ке для случаев обтекания частиц. Циркуляционное движение жидкости внутри капель играет существенную роль при расчете массопередачи в случае лимитирующего сопротивления дисперсной фазы. Для такого режима наблюдается нестационарный характер процесса массопередачи, что при больших значениях Ре приводит к зависимости критерия Шервуда или Нуссельта от критерия Фурье. Внешний массо- и теплообмен при больших Ре стационарен и описывается уравнениями диффузионного пограничного слоя. При исследовании решений этих уравнений показано, что для расчета величины массового потока достаточно знать распределение вихря по поверхности твердой сферы или касательной составляющей эрости по поверхности капли и газового пузырька. Обсуждены гранр цы применимости погранслойных решений при увеличении отношения вязкостей дисперсной и сплошной фаз. Общий случай соизмеримых фaJ0выx сопротивлений описан обобщенной циркуляционной моделью. Закономерности массо-и теплопереноса при лимитирующих сопротивлениях сплошной и дисперсной фаз и общий случай соизмеримых фазовых сопротивлений рассмотрены в разделах 4.2—4.4.  [c.168]

    Тур и Марчелло [231] рассматривали пленочную и пенетращюнную теории как крайние случаи процесса переноса, для которых в формулах коэффициента массоотдачи показатель степени при коэффициенте диффузии принимает предельные значения, равные 1 и 0,5, соответственно. Они считали, что в реальных условиях значения показателя степени могут колебаться между этими величинами. Предложенная ими пленочно-пенетрационная модель также основана на идее обновления поверхности турбулентными вихрями, но с более гибким учетом периода обновления. При малых временах пребывания вихря на поверхности процесс массопередачи нестационарен (пенетрационная теория), тогда как при больших временах успевает установиться постоянный градиент концентраций и наблюдается стационарный режим (пленочная теория). Для произвольных значений времен обновления модель учитьгеает оба механизма массопередачи — стационарный и нестационарный. Математическая формулировка пленочно-пенетрационной модели сводится к решению уравнения (4.12) при условии, что постоянное значение концентрации задается не на бесконечность, как в модели Хигби, а на конечном расстоянии от поверхности тела. Величина этого расстояния, как правило, неизвестна, и не указаны какие-либо надежные модели ее определения. [c.175]

    Большинство исследователей связьшали существование поверхностного сопротивления с наблюдаемым ими отклонением от формулы аддитивности и различием скорости массопередачи в прямом и обратном направлениях. К сожалению, до последнего времени надежные методы определения частных коэффициентов массопередачи отсутствовали, и поэтому крайне противоречивые данные, полученные различными авторами, по отклонению от формулы аддитивности, нельзя считать достоверными. Кроме того, различие в скоростях массопередачи в прямом и обратном направлениях, обнаруженное в ряде работ, было обусловлено проведением процесса массопередачи в неидентичных условиях и не имело отношения к поверхностному сопротивлению [385, 386]. [c.261]

    Для количественной оценки поверхностного сопротивления процессов массопередачи, сопровождаемых ассоциацией, диссоциацией или сольватацией молекул, Пратт [387] предположил, что на поверхности раздела фаз протекает обратимая реакция с порядком т в прямом направление и и в обратном. Для скорости гетерогенной реакции и поверхностного сопротивления Пратт получил вьфажения  [c.262]

    Исследуем роль основнь1х параметров на процесс массопередачи с химической реакцией. На рис. 6.7-6.9 приведены зависимости А от т(А характеризует количество извлеченного при хемосорбции вещества). При увеличении константы скорости реакции величина А возрастает, достигая максимального значения при (кривая 1 на рис. 6.7). [c.280]

    Колонны с насадкой, часто применяемые для осуществления чисто физических процессов массопередачи, используются также и для проведения гетерогенных реакций. Например, кожухотрубный реактор с насадкой для непрерывного хлорирования бензола состоит из ряда труб диаметром 102 мм и длиной около 7,6 м, заполненных керамическими кольцами Рашига диаметр кожуха аппарата 1,22 л, пропускная способность составляет около 35 т бензола1сутки. Для уменьшения образования полихлорбензолов температура в реакторе поддерживается ниже 43 °С за счет циркуляции в межтрубном пространстве охлаждающей воды. [c.360]

    Книга является монографией, наиболее полно освещающей и обобщающей вопросы теории и практики процессов химического взаимодействия газов и жидкостей. В ней рассмотрены физикохимические основы и дано математическое описание этих процессов, их кинетика в различных гидродинамических условиях работы газожидкостных реакторов, абсорберов и их лабораторных моделей, элементы расчета соответствующих аппаратов. В книге приведено большое количество числовых примеров. Ряд разделов может спужить ценным пособием для экспериментаторов в области процессов массопередачи. [c.4]

    D а V i е S J. Т., hem. Eng. Progr., 62, № 9, 89 (1966). Обновление межфазной поверхности (и возникновение турбулентности у межфазной границы) в процессе массопередачи. [c.280]

    Проектирование каскадных установок требует поступенчатого решения (по аналогии с потарелочным расчетом в ректификационных, абсорбционных и экстракционных колоннах). При расчете таких каскадов (как и при расчете других процессов массопередачи) используют такие понятия, как кинетическая кривая и рабочая линия . [c.204]

    Массопередача относится к числу диффузионных процессов. Простейшпм процессом массопередачи является молекулярная диффузия. Законы диффузии были разработаны Фиком в 1855 г. по аналогии с законами теплопроводности Фурье. В 1896 г. Щу-карев [1] впервые использовал уравнение молекулярной диффузии для описания массопередачи применительно к процессу растворения. Им была предложена формула [c.194]


Библиография для Процессы массопередачи: [c.129]   
Смотреть страницы где упоминается термин Процессы массопередачи: [c.176]    [c.177]    [c.260]    [c.79]    [c.52]    [c.97]    [c.115]    [c.282]    [c.8]    [c.270]    [c.117]   
Смотреть главы в:

Методы кибернетики в химии и химической технологии -> Процессы массопередачи

Методы кибернетики в химии и химической технологии -> Процессы массопередачи

Теоретические основы типовых процессов химической технологии -> Процессы массопередачи

Термическая фосфорная кислота, соли и удобрения на ее основе -> Процессы массопередачи

Методы кибернетики в химии и химической технологии -> Процессы массопередачи




ПОИСК





Смотрите так же термины и статьи:

Массопередача

Массопередача массопередачи



© 2025 chem21.info Реклама на сайте