Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Раздир

    Вулканизаты из бутадиен-стирольных каучуков значительно меньше сохраняют значения сопротивления разрыву, относительного удлинения и сопротивления раздиру при повышенных температурах (100°С) и характеризуются менее высокой эластичностью, более высокими механическими потерями и повышенным теплообразованием по сравнению с вулканизатами из натурального каучука, а также уступают им по сопротивлению многократным деформациям изгиба, растяжения, сжатия и разрастанию трещин и текучести. [c.266]


    Остаточное удлинение, % Сопротивление раздиру, кН/м 14 20 15 [c.265]

    Остаточное удлинение, % Сопротивление раздиру, к Н/м 20 22 21 23 19  [c.231]

    Термоэластопласты имеют высокие значения сопротивления разрыву, относительного удлинения, эластичности, сопротивления раздиру и стойкости к многократным деформациям, морозостойкости. Оптимальные физико-механические свойства достигаются в тех случаях, когда разность между температурами стеклования соответствующих блоков превышает 100°С. [c.284]

    Резины на основе фторкаучуков обладают хорошими сопротивлениями абразивному истиранию (14-Ь 19,6) 10 мм /Лж и раздиру 40—60 кН/м. [c.519]

    Литиевый полиизопрен при 20°С обладает сопротивлением разрыву близким к прочности НК, но значительно уступает последнему при повышенных температурах (табл. I). От НК он отличается также меньшим сопротивлением раздиру, отсутствием клейкости, обладает несколько более высокой температурой стеклования (в среднем — 68 против —72°С для НК) и более низким коэффициентом морозостойкости. [c.206]

    Широко известные работы по прививке к полиизопрену ма-леинового ангидрида в растворе пока не доведены до промышленной разработки. С другой стороны, значительный интерес вызывает механохимическая прививка малеинового ангидрида [44, 45], реализация которой облегчается применением в промышленности для сушки при температуре свыше 150°С червячных прессов и возникающего отсюда совмещения стадий сушки и модификации в отсутствие мономера. При исследовании свойств модифицированного малеиновым ангидридом полиизопрена в одной из наиболее обстоятельных работ по физике и химии модификации [18] было констатировано улучшение когезионной прочности и динамических свойств вулканизатов и вместе с тем некоторое снижение сопротивления раздиру. Можно сделать вывод, что во многих отношениях эффект модификации не зависит от способа введения и природы функциональных групп (гидроксильная, карбоксильная, азотсодержащая) и характеризуется общими чертами физической картины изменения свойств. [c.238]

    Все же основная задача модификации диеновых полимеров — исследование путей синтеза эластомеров, прежде всего на основе полиизопрена, ни по одному из важнейших свойств (когезионная прочность, адгезия, эластичность, сопротивление раздиру и др.) не уступающих натуральному каучуку, а напротив, по некоторым из них превосходящих его, и выбор оптимального среди таких методов для промышленной реализации. [c.240]


    По сравнению с цис-полибутадиеном он характеризуется луч-щей обрабатываемостью, более высокими показателями сопротивления разрыву, раздиру и разрастанию трещин, лучшим сцеплением с дорожным покрытием, приближаясь к нему по показателям эластичности, морозостойкости и износостойкости. [c.281]

    Остаточная деформация (после сжатия на 20% в течение 24 ч при 100 С), % Сопротивление раздиру, кН/м Эластичность по отскоку, % при 20°С при 100 С [c.314]

    Сопротивление раздиру, кН/м Эластичность по отскоку при 22 °С при 100 °С Твердость по ТМ-2 Сопротивление разрастанию трещин, тыс. циклов Коэффициент теплостойкости при 100 С [c.363]

    Остаточное удлинение, % при 20°С при 100 °С Остаточная деформация после старения в течение 72 ч, % при 100°С при 150°С Сопротивление раздиру, кН/м Эластичность по отскоку, % при 20 °С при 100°С Твердость по Шору Температура хрупкости, °С Коэффициент морозостойкости 0,15—0,20 0,18—0,23 при —15 С Степень набухания, ч. (масс.) в трансформаторном масле в течение 72 ч при 150 °С [c.393]

    Для иллюстрации общего комплекса свойств, получаемого при применении сложноэфирных каучуков, приведем данные по испытанию резин протекторного типа на основе БЭФ-10Э (табл. 2) [8]. Резина на основе БЭФ-10Э существенно превосходит обычные протекторные резины по напряжению при удлинении 300%, эластичности при 20°С, твердости, истираемости и особенно по сопротивлению старению и образованию трещин. Практически, старение в течение 48 ч приводило к улучшению свойств резины на основе БЭФ-10Э, главным образом сопротивления раздиру и механических показателей, при высоких температурах. [c.410]

    Эластичность по отскоку, Твердость по Шору А Сопротивление раздиру, обычные вулканизаты высокопрочные вулканизаты Диэлектрическая мость при 20 С при 200 °С [c.491]

    Заслуживают внимания данные рассмотрения зависимости молекулярно-массового распределения бифункционального преполимера различной полидисперсности и распределения цепей между узлами разветвления в реакциях образования трехмерных структур [49]. Весьма неожиданным оказалось влияние молекулярной массы в диапазоне (2,3 5,0) Ю" сегментированных эластомеров на температуру стеклования, сопротивление многократным деформациям, раздиру и гистерезис. Вероятно, причину аномального поведения этих систем следует искать в реструктурировании и упорядочений самих сегментов [50]. [c.539]

    Природа поперечных связей в эластомерах оказывает значительное влияние на их физико-механические свойства. Так, алло-фановые и биуретовые структуры придают полиуретанам сочетание высокой твердости и эластичности [56]. Уретановые связи характеризуются улучшенной термической стабильностью по сравнению с двумя предыдущими структурами. При вулканизации уретановых каучуков серой образуется лабильная сетка, способная к перестройке при воздействии напряжений. Серные вулканизаты, как правило, имеют высокие значения сопротивления раздиру [57]. Относительно прочные С—С-связи снижают у эластомеров остаточные деформации. [c.542]

    Для типичных литьевых, вальцуемых и термопластичных эластомеров характерен высокий уровень физико-механических свойств (табл. 8). Литьевые эластомеры остаются непревзойденными в условиях эксплуатации при высоких и низких температурах. Термоэластопласты имеют лучшее сопротивление раздиру по сравнению с вальцуемыми каучуками. [c.545]

    Сопротивление раздиру, кН/м Твердость, Шор А Эластичность по отскоку, % [c.546]

    При использовании в качестве удлинителя цепи 3,3 -дихлор-4,4 -диаминодифенилметана получают эластомеры с высоким сопротивлением раздиру, причем лучшие результаты достигаются в системах с отношением диамин преполимер близким к 1. Отчасти это объясняется возникновением большего числа водородных связей, увеличивающих когезионную прочность полимера, что, однако, сопровождается ростом потерь уже при первом цикле деформации полимочевин — сегментированных уретанов реализуется до 90% всех потерь на гистерезис. [c.546]

    Метод П1 — раздир или поперечный сдвиг. [c.333]

    Вполне обоснованный выбор именно этих эластомеров [12] как основы производства шин и резинотехнических изделий связан с ценным комплексом свойств полиизопрена и полибутаднена и их композиций хорошими технологическими свойствами сырых резиновых смесей, отличными упруго-гистерезисными и прочностными свойствами, высоким сопротивлением раздиру и износу, тем-пературостойкостью, низкой температурой стеклования и др. [c.225]

    Модифицированный изопреновый каучук уступает НК и СКИ-3 по сопротивлению раздиру и усталостной выносливости. Применение специальной сероускорительной группы позволяет уменьшить или устранить это различие. Вулканизаты смесей серийного и модифицированного полиизопрена имеют близкие значения сопротивления раздиру. [c.233]

    Полиуретаны на основе кристаллизующихся полиэфиров имеют наибольшее сопротивление разрыву. Высокая механическая прочность их связана со способностью кристаллизоваться и ориентироваться при деформировании. Поэтому естественно, что при сопоставимой плотности энергии когезии прочность кристаллических (или потенциально способных кристаллизоваться при деформировании) полимеров всегда существенно выше, чем аморфных эластомеров. Однако попытки найти связь между температурой плавления кристаллических полиуретанов и такими свойствами, как сопротивление разрыву и раздиру оказались неудачными (табл. 4). Вероятно, объяснение этому факту следует искать в том, что на повышение прочности оказывает влияние только лишь кристаллизация, которая развивается непосредственно в процессе деформирования эластомера. Наглядной иллюстрацией сказанного является сравнение свойств полиуретанов на основе полидиэтилен- и полиэтиленадипинатов последние кристаллизуются уже при растяжении на 50%. [c.535]


    Мойомер практически не оказывает ёлияния на сопротивление вул канизатов разрыву и раздиру [59]. Вулканизаты сополимеров с ДЦП характеризуются большими теплообразованием и накоплением остаточной деформации по сравнению с вулканизатами сополимеров с ЭНБ и 1,4-ГД (табл. 2) [60, 61]. [c.313]

    БНК, модифицированные поливинилхлоридом, различаются по соотношению БНК. и ПВХ, типу БНК, способу полимеризации, вязкости по Муни. Выпускаются две группы каучуков 70% БНК+ 30% ПВХ (главным образом) и 50% БНК+ 50% ПВХ. Эти каучуки легко перерабатываются на обычном оборудовании, резиновые смеси на их основе хорошо шприцуются, каландруются, формуются, льются. Основным преимуществом БНК, модифицированных ПВХ, является их исключительная погодо-, озоностой-кость, а также высокое сопротивление раздиру, высокая стойкость к тепловому старению и несколько большая стойкость к агрессивным средам. Кроме того, резины из этого каучука имеют высокую огнестойкость. Для обеспечения стойкости каучуков с ПВХ к тепловому старению в них вводят обычные неокрашиваюшие антиоксиданты для БНК и специальные для ПВХ. Эти каучуки выпускают обычно в виде гранул. [c.365]

    Испытание каучука БНЭФ-26-7И в сравнении с СКН-26М показало [7, 9], что резины на основе БНЭФ (табл. 3) имеют более высокие твердость, напряжение при удлинении 300%, сопротивление раздиру, разрастанию трещин, старению и прочностные показатели при 150 °С, а также озоностойкость. Коэффициент эластического восстановления при —25°С, температуростойкость, сопротивление раздиру, истиранию и эластичность по отскоку зависят от используемой системы ковалентной вулканизации и могут быть существенно улучшены при введении в нее диметилглиоксима. [c.410]

    Типичные представители уретановых эластомеров имеют высокие напряжения при удлинении, сопротивление раздиру, етей-кость к набуханию в различных средах, к действию окислителей и радиации. По износостойкости они превосхедат известные в на-стоящее время полимерные материалы. Одной из характерных особенностей этих полимеров является возможность сочетания высокой эластичности с широким диапазоном твердости от 10 по Шору А до 60 по Шору Д. [c.523]

    Полимердиол Температура плавления, С Молекулярная масса полиэфира Сопротивле-иие а рыву. Сопротивление раздиру, кН/м [c.535]

    Полимер Молеку- лярная масса полиэфира Напряжение при Удлинении 300%, МПа Сопротивление j pHBy, Относительное удлинение, % Сопротивление раздиру, кН/м Твердость по Шору А [c.544]

    Остаточное у ликение, % Остаточная деформация после сжатия на 20% после выдержки при 100 С, % в течение 24 ч в течение 72 ч Эластичность по отскоку, % при 20° С при 100 С Твердость по Шору Сопротивление раздиру, кН/м [c.583]


Смотреть страницы где упоминается термин Раздир: [c.206]    [c.207]    [c.281]    [c.326]    [c.351]    [c.365]    [c.408]    [c.409]    [c.447]    [c.449]    [c.450]    [c.419]    [c.487]    [c.113]    [c.333]    [c.343]    [c.344]    [c.351]    [c.352]    [c.352]    [c.353]   
Смотреть главы в:

Методы измерения механических свойств полимеров -> Раздир

Разрушение эластомеров в условиях, характерных для эксплуатации -> Раздир


Прочность и разрушение высокоэластических материалов (1964) -- [ c.0 ]

Структура и прочность полимеров Издание третье (1978) -- [ c.72 , c.268 ]

Методы измерения механических свойств полимеров (1978) -- [ c.235 ]

Прочность и механика разрушения полимеров (1984) -- [ c.220 ]

Энциклопедия полимеров Том 3 (1977) -- [ c.3 , c.321 , c.322 ]

Энциклопедия полимеров Том 3 (1977) -- [ c.3 , c.321 , c.322 ]

Справочник резинщика (1971) -- [ c.567 ]

Разрушение эластомеров в условиях, характерных для эксплуатации (1980) -- [ c.78 , c.133 ]

Разрушение твердых полимеров (1971) -- [ c.358 ]

Механические испытания резины и каучука (1949) -- [ c.0 ]

Производство и применение резинотехнических изделий (2006) -- [ c.132 ]

Структура и механические свойства полимеров Изд 2 (1972) -- [ c.242 ]




ПОИСК







© 2025 chem21.info Реклама на сайте