Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Конформация влияние молекулярной массы

    Поскольку самопересечения цепи более вероятны в компактных конформациях, можно ожидать, что обычно а > 1. Точное значение этого параметра зависит, однако, от молекулярной массы полимера и от растворителя. Влияние молекулярной массы становится очевидным, еслн учесть, что более длинные цепи имеют больше возможностей для самопересечений, чем более короткие. Поэтому а должно увеличиваться с увеличением молекулярной массы. [c.155]


    Природа и количество функциональных групп в молекуле полимера, а также его геометрическое строение определяют его адсорбцию из растворов. В случае линейных молекул значительную роль играет длина цепи. Не выяснен пока вопрос о влиянии молекулярной массы полимера на его адсорбцию из раствора. Это вопрос осложняется тем, что с увеличением молекулярной массы возрастает количество возможных конформаций макромолекул, некоторые поры становятся недоступными, а в доступных, но соизмеримых с макромолекулами порах адсорбционное равновесие устанавливается очень медленно (в течение суток и более) [136, 138]. Введение заместителей в боковую цепь приводит часто к снижению адсорбции [138]. Природа функциональных групп в макромолекулах особенно существенна при хроматографии олигомеров в области сравнительно небольших молекулярных масс (менее 10 000) [111]. [c.247]

    Анализ этой проб емы методами математического моделирования показывает, что создание закрепленной структуры все же возможно, но только для макромолекул, обладающих достаточной жесткостью цепей и с сильно взаимодействующими звеньями. Другой путь — это присоединение к макромолекуле групп, способных к взаимодействию [при условии обеспечения их миграции вдоль цепи (сополимер с переменной первичной структурой)]. Следует ожидать, что в таком сополимере должен протекать процесс самонастройки, т. е. самопроизвольный процесс выбора макромолекулой конформации, отвечающей минимуму свободной энергии. Теоретический анализ показал, что для сополимера данной молекулярной массы и состава существует лишь небольшой набор таких закрепленных конформаций. Экспериментальным обоснованием для таких представлений послужили исследования о влиянии поверхностно-активных веществ на структуру полиэлектролитов в растворе [62, 63]. В подобного рода системах роль мигрирующих взаимодействующих групп играют ионы поверхностно-активных веществ, электростатически присоединенные к цепи полиэлектролита и гидрофобно взаимодействующие между "собой углеводородными радикалами. [c.104]

    Влияние на гибкость макромолекулы молекулярной массы заключается в том, что с ростом последней увеличивается число возможных конформаций. Это приводит к тому, что даже жесткие цепи начинают сворачиваться, и макромолекулы как бы приобретают свойство гибкости. [c.22]

    Характер образования комплексов практически не зависит от молекулярной массы, но чувствителен к pH в связи с его влиянием на диссоциацию карбоксильных групп и конформацию молекул (рис. 103, в). [c.275]


    Полимерные цепи, сшитые в условиях концентрированной системы, при переходе к разбавленному раствору могут изменить свои средние размеры из-за коренного изменения термодинамических условий (подробнее см. главу 6), однако наличие узлов сетки внутри клубка приводит к тому, что не все конформации могут реализоваться. Поэтому среднестатистические размеры клубка с внутримолекулярными сшивками меньше, чем размеры клубка, образованного линейной цепью той же молекулярной массы. Если внутримолекулярное сшивание проводить в клубках различного размера, то узлы сетки будут фиксировать существуюш,ую топологию цепи, и при достаточно большом числе узлов изменение термодинамических условий (качества растворителя) не может суш ественно изменить размеры клубка. Поэтому можно ожидать, что изменение характеристической вязкости золь-фракции отражает изменение топологии макромолекулы в условиях сшивания, т. е. для опытов с разной концентрацией раствора — влияние концентрации на размеры макро-молекулярного клубка. Уменьшение характеристической вязкости при сохранении молекулярной массы означает, что с увеличением концентрации размеры полимерных цепей уменьшаются. При этом (см. рис. 6) степень уменьшения размеров зависит от растворителя в диоксане наблюдается более сильное падение. [c.118]

    Л олекулярная масса полимера не оказывает влияния на величину потенциального барьера, так как последний определяется только взаимодействием соседних звеньев. Поэтому все полимеры одного и того же гомологического ряда имеют одинаковый потенциальный барьер вращения. Но степень свернутости цепи тем выше, чем больше молекулярная масса полимера [см. уравнение (2.7)]. Поэтому длинные макромолекулы обладают большей кинетической гибкостью. Это можно продемонстрировать на следующем простом примере. Небольшой отрезок тонкой металлической ленты является жестким, а длинная лента всегда сворачивается. Такая же картина наблюдается в случае цепей полимеров. Поэтому по мере увеличения молекулярной массы число конформаций, которые может принять одна макромолекула, возрастает. [c.72]

    Полимеры обладают рядом специфических свойств, обусловленных их большой молекулярной массой, цепным строением макромолекул и их гибкостью (способностью макромолекул изменять свою конформацию под влиянием теплового движения звеньев или внешних механических сил), а также интенсивным проявлением сил вторичного взаимодействия между макромолекулами. При переходе от линейных цепей к разветвленным полимерам и сетчатым [c.16]

    Существенное влияние на величину внутренних напряжений оказывает молекулярная масса молекул пленкообразующего, влияющая на их гибкость и конформацию и структурно-механические свойства системы. В табл. 2.2 [40, 41] приведен состав и характеристика диановых эпоксидных смол, щироко применяемых для получения покрытий, и физИко-механические свойства покрытий на их основе, полученных при термическом отверждении. [c.57]

    Влияние поверхности на кристаллизацию существенно зависит от молекулярной массы кристаллизующегося полимера. Так, для низкомолекулярных полимеров (олигомеров) кристаллизация в тонких прослойках может быть полностью подавлена из-за различий конформаций низкомолекулярной и высокомолекулярной цепи (сравнительно выпрямленная негауссова конформация). Таким образом, очевидно, что скорость кристаллизации наполненного полимера из расплава можно в широких пределах регулировать путем подбора наполнителя, поверхность которого ингибирует или ускоряет кристаллизацию. Один и тот же наполнитель, в зависимости от его концентрации и условий кристаллизации, может оказывать различное действие. Во всех случаях существенную роль в кристаллизации играет соотношение молекулярных размеров полимерной цепи и толщины полимерной прослойки между частицами наполнителя. Отсюда следует, что степень кристалличности наполненного полимера зависит как от содержания наполнителя, так и от условий кристаллизации. [c.157]

    Из предыдущего следует, что значение а определяется природой растворителя и температуры. Следовательно, макромолекула в одном и том же растворителе в зависимости от температуры может иметь конформации трех типов, условное изображение которых приведено на рис. 2.10 набухшего клубка, идеального (гауссового) клубка и сжатого клубка, называемого глобулой (а < 1), для которых характерны существенно отличные зависимости размера от молекулярной массы. Поэтому можно ожидать, что изменение температуры в интервале, достаточном для изменения конформации клубка, оказывает сильное влияние на его размер. Изменение [c.57]

    Вообще говоря, при квантовомеханическом подходе можно рассматривать и изменения молекулярных систем во времени, но на деле такие вычисления выполнить очень трудно. Практическое представление кинетической энергии связано с дальнейшим упрощением, согласно которому система подчиняется законам классической механики, а атомы ведут себя как макроскопические объекты. Поэтому моменты ядер представляют не в виде (—//г/2я) ( // 9), а как произведения массы и скорости р = тю. Тогда оператор Гамильтона не действует на волновую функцию, а сам становится функцией, значением которой является энергия системы. Оператор трансформируется в классический гамильтониан. Энергия системы не является больше дискретной величиной, квантовомеханическая неопределенность исчезает, а движение ядер подчиняется закону Ньютона. Конечно, ядерные и электронные движения квантуются, но пренебрежение этими движениями оказывает влияние только на колебания химических связей. Даже при классическом описании движения ядер возможно квантовомеханическим методом рассчитать потенциальную энергию каждой конформации, что, однако, требует чрезмерно большого машинного времени. В данном случае квантовая механика не имеет каких-либо преимуществ, и расчет потенциальной энергии каж  [c.571]


    Трудность при анализе рассматриваемой проблемы в случае расплавов состоит в том, что уже нельзя с полной уверенностью предполагать, как раньше, что вероятность контакта сегментов, принадлежащих одной и той же макромолекуле, намного превышает вероятность контакта сегментов различных молекул. По-видимому, об этом свидетельствуют результаты анализа низкотемпературной кристаллизации ПЭТФ, описанные в разделе Н1.4.6. В этом случае, очевидно, возникает вопрос о конформации полимерной цепи непосредственно перед началом кристаллизации. Важная роль конформации макромолекулы в момент кристаллизации становится очевидной из экспериментов е целлюлозой (раздел Н1.4.3), из данных по влиянию молекулярной массы (раздел П1.4.2), а также высокого давления (раздел И1.4.7), хотя в последнем случае природа наблюдаемых явлений еще до конца и не понятна. Существует мнение, что складчатая структура, подобная показанной на рис. Н1.54, в, существует уже в момент начала кристаллизации [44], что подтверждается данными, полученными при кристаллизации в процессе ориентации [64]. Следовательно, эта проблема не сводится к простому расчету значения статистической вероятности, поскольку она имеет непосредственное отношение к подвижности полимерных цепей. [c.218]

    Специфическими молекулярными характеристиками полимеров являются молекулярная масса, определяющая размеры цепочек и гибкость макромолекулы, зависящая от ее строения и природы мел молекулярпоп и внутримолекулярной связи. Гибкость макромолекул — это способность полимерных цепей изменять свою конформацию в результате внутримолекулярного (мнкро-броунова) теплового дви кепия звеньев равновесная, или термодинамическая гибкость) илп же под влиянием внешних механических сил (кинетическая, или механическая гибкость). Конформация — это пространствеппое распределение атомов и атомных групп в макромолекуле, определяемое длиной соответствующих связей II значениями валентных углов такое распределение, которое может меняться без химических реакций. [c.48]

    Такая методика исследования применялась для определения молекулярной массы белков и нуклеиновых кислот и для изучения их строения в адсорбционном слое этот метод позволяет получить ценные сведения о конформации молекул в поверхностном слое, поскольку эта последняя олределяет величину площади, занимаемую ими в двухмерной пленке. Чтобы преодолеть вазимное шритяжение молекул в адсорбционном слое, эти измерения проводят в той области значений pH, в которой молекулы заряжены вследствие ионизации. Электростатическое отталкивание несколько увеличивает эффективный размер молекул, но это влияние, как правило, невелико, и им пренебрегают. Более существенно заряд молекулы влияет на конформацию молекулы белка и площадь, занимаемую ею на поверхности. Соответственно конформация белка зависит от pH среды, так как величина pH определяет диссоциацию ионогенных групп и их гидратацию. При изменении pH изменяется и наклон прямых л5м(л) (см. рис. II—19), т. е. величина 51. [c.66]

    Хитозан проявляет ярко выраженные полиэлектролитные свойства в водной среде приобретает заряд, фиксированный на основной цепи макромолекулы. В связи с этим на его молекулярную конформацию оказывают влияние взаимодействие электрических зарядов, расположенных вдоль основной цепи макромолекул, и локальное сопротивление звеньев макромолекул продольному изгибу. Электростатические заряды влияют на форму макромолекул в растворах, набор конформационных состояний включает как статический клубок, так и более компактное "квазиглобулярное" состояние, характеристическая вязкость растворов зависит от молекулярной массы. Необходимо отметить, что хитозан сравнительно однороден по молекулярной массе. [c.388]

    Высокоэластическое состояние проявляется только тогда, когда макромолекулы имеют значительную длину (большую молекулярную массу). Оно особенно свойственно гибкоцепным полимерам, характеризуемым небольшими силами межмолекулярного взаимодействия, и может проявляться для них уже при комнатной температуре. В случае значительного межмолекулярного взаимодействия (диполи, водородная связь) высокоэластическое состояние наблюдается при повышенных температурах, т. е. когда действие межмолекулярных сил ослабевает. Сравнительная легкость принятия макромолекулой самых различных конформаций под влиянием внешнего механического напряжения объясняет. льшие деформации в высокоэластическом состоянии (сотни процентов). После снятия нагрузки благодаря тепловому перемещению сегментов макромолекулы возвращаются к исходным конформациям й деформация исчезает. [c.25]

    Данные по угловой зависимости интеисивиости. НРН при изменении концентрации меченых молекул были обработаны по методу Зимма ( тт, см. [12, 13]), что позволило определить молекулярную массу рассеивающих молекул. Значения Мм хорошо совпадают с таковыми, вычисленными на основании данных мембранной осмометрии и рассеяния света в растворах (табл. I. 1). Кроме того, проведенное изучение показало, что второй вириальный коэффициент Лг=0 в пределах точности измерений. Это означает, что изотопное замещение не оказывает влияния на конформацию полимерной цепи. [c.18]

    Очень большое влияние на температуру стеклования пластифицированной системы оказывают конфигурация и конформация молекул пластификатора. Количественно это впервые показано в работах Гиббса и Ди Марзио [24], из которых следует, что при прочих равных условиях значительно эффективнее пластификаторы с гибкими молекулами, способными принимать различные конформации. В гомологических рядах пластификаторов, когда гибкость молекул постоянна, пластифицирующее действие понижается с увеличением молекулярной массы. [c.466]


Смотреть страницы где упоминается термин Конформация влияние молекулярной массы: [c.105]    [c.222]    [c.92]    [c.84]   
Физическая химия полимеров (1977) -- [ c.199 , c.202 ]




ПОИСК





Смотрите так же термины и статьи:

Молекулярная масса

Молекулярный вес (молекулярная масса))



© 2025 chem21.info Реклама на сайте