Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислоты, образуемые серой и ее гомологами

    Очистка нефтепродуктов. Органические кислоты, сероводород и меркаптаны извлекают из нефтепродуктов щелочной очисткой. Эти вещества реагируют со щелочью, образуют соли, растворимые в воде и легко удаляющиеся с ней. При щелочной очистке из-за гидролиза невозможно достигнуть полного удаления меркаптанов и органических кислот. Чем больше молекулярная масса органических кислот или меркаптанов, тем труднее они извлекаются из топлива. При щелочной очистке из нефтяного топлива можно извлечь 97,1 % этилмеркаптанов и только 33 % изоамилмеркап-танов. При сернокислотной очистке удаляются частично сернистые соединения, органические кислоты и асфальто-смолистые вещества. Сернистые соединения или непосредственно растворяются в серной кислоте, или образуют в ней растворимые соединения. Сероводород окисляется серной кислотой до серы с образованием сернистого ангидрида и воды. Меркаптаны с серной кислотой образуют дисульфиды, сернистый ангидрид и воду. Тиофен и его гомологи образуют хорошо растворимую в серной кислоте тиофен-сульфокислоту. Сульфиды, дисульфиды и тиофаны не реагируют с серной кислотой, но растворяются в ней и поэтому частично извлекаются из нефтепродуктов при сернокислотной очистке. [c.123]


    Полиамидная поверхность в зависимости от состава подвижного растворителя может проявлять двойственный харак--тер, т. е. выступать в роли полярной или неполярной фазы. Следовательно, разделение веществ может протекать либо как обычный распределительный, либо как обращенно-фазовый рас-. пределительный процесс. Например, при хроматографировании серии гомологов сложных эфиров галловой кислоты в системе метанол—ацетон—вода (60 20 20) было найдено, что величины Rf уменьшаются с увеличением длины цепи этерифицирую-щего спирта (рис. 8, 1). Однако они возрастают с увеличением длины цепи радикала, когда системой растворителей служит смесь петролейный эфир—бензол—уксусная кислота—диметилформамид (10 10 5 0,25) (см. рис. 8, 2). Предположено, что, в первом случае полиамид ведет себя как неполярная поверхность, Этот случай аналогичен обращению фаз при жидкость- жидкостном распределении. В системах же с до-бавлением уксусной кислоты стационарная фаза образуется за счет полярного комплекса полиамид—уксусная кислота, аналогично целлюлозноводному комплексу в хроматографии на бумаге. [c.31]

    Эта реакция подобна реакции спирта с алкилсерной кислотой. Поэтому для получения эфиров можпо согласно Краффту и Рос су пользоваться ароматическими сульфокислотами или их э1 жрами. По Шреттеру особенно пригодны для этой цели алкильные эфиры метионовой кислоты. Этот метод дает возможность вести непрерывный процесс получения эфира, так как сульфокислота не восстанавливается подобно серной и дает эфиры, не загрязненные сернистой кислотой. Особенно хорошие выхода получаются при работе с высшими гомологами серного эфира, которые или совсем не образуются при работе с сер. ной кислотой, или дают очеиь плохие выхода. [c.581]

    Интересная реакция происходит при окислении тиофена (а также его прв> стейших гомологов) пербензойной кислотой сначала образуется смесь сульфона и сульфоксида, которые тут же реагируют между собой по схеме диенового синтеза сульфоксид, у которого стабилизация ароматического секстета тиофенового кольца нарушена присоединившимся к атому серы кислородом, выступает в роли диена, а сульфон — как диенофил. Образующийся аддукт отщепляет тиоксидный мостик (в виде сернистого газа и серы) и после дальнейшего дегидрирования превращается в двуокись тионафтена  [c.116]

    Исходные сераорганические соединения имеют дипольные моменты, не превышаюш ие 2 ), причем минимальные Р имеют тиофен и его гомологи. Так тиофен, 2-метилтиофен, 3-метилтиофен, 2,5-ди-метилтиофен, имеют дипольные моменты, равные соответственно 0,53 0,67 0,82 и 0,51/) [43, 44]. Благодаря этому, а также из-за отсутствия в продуктах окисления сульфокислот и соответственно их сложных эфиров, тиофен и его гомологи в минимальной степени, по сравнению с другими сераорганическими соединениями, способствуют образованию твердой фазы. С увеличением степени окисления атома серы дипольные моменты суш,ественно возрастают. Особенно велики дипольные моменты в ковалентных сульфонатах и сульфатах (см. табл. 43). Поэтому с увеличением глубины окисления сераорганических соединений значительно возрастают процессы образования твердой фазы. Дипольные моменты в сераорганических соединениях значительно выше, чем в кислородных соединениях со сходным углеводородным скелетом. Например, дипольные моменты и-окси-бензойной кислоты и ге-оксифенилметилсульфона составляют 2,73 и 5,32 ). В соответствии с этим энергия межмолекулярного взаимодействия сераорганических соединений имеет большую величину (см. табл. 25). Наряду с этим существенное значение для процессов коагуляции имеет водородная связь, образующаяся в структурах 8=0. . . НО—8, 8=0. . . НО—С. Экспериментально определенная по КР-спектрам энергия водородной связи в бензолсульфокислоте составила 5,7 ккал/молъ. [c.125]


    При термическом расщеплении угля имеющиеся в нем кислородсодержащие соединения разлагаются с выделением воды, двуокиси и окиси углерода и образованием фенолов, кумарона, дифе-нилового эфира и других органических веществ. Из сернистых компонентов получаются сероводород, сероуглерод и гетероциклические продукты, подобные тиофену, тиотолену, тионафтену и др. Азотистые соединения, имеющиеся в угле, отщепляют азот и аммиак и образуют синильную кислоту, гетероциклические азотистые основания, подобные пиридину, хинолину, карбазолу и их гомологам и др. Упомянутые вещества переходят в коксовый газ и жидкие продукты, но кокс все же содержит кислород, серу и азот. [c.89]

    Высшие алкансульфокислоты. Пропан-1,2-дисульфокислота получена сульфированием масляной кислоты [435] или ее амида 1435], а также кипячением бромистого пропилена с раствором сер-пистокислого аммония [440, 4836]. При дейстздии на бромистый пропилен сернистокислого натрия образуется главным образом пропилен. Дисульфохлорид реагирует с анилином [4796] по тому же пути, как и его низший гомолог  [c.187]

    Одним из слабых мест теории типов было истолкование свойств непредельных соединений. ...Реакции, при которых тела вступают в соединение путем прямого присоединения, не могли, по крайней мере во всех случаях, быть объяснены илп предвидены теорией типов ,— писал в 1861 г. Менделеев (19, стр. 23]. Попытка найти выход из создавшегося положения была изложена Менделеевым в статье под заглавием Опыт теории пределов органических соединений , из которой и была заимствована выдержка. Суть этой работы такова. К предельному ряду С Х.2п4-2 принадлежат веш,ества, которые не способны к присоединению одновалентных атомов или групп, а также радикального кислорода или серы без распадения. К рядам С Х2 , С Х2 2 и т. д. принадлежат вещества, способные к такому присоединению и стремящиеся приблизиться к пределу С Х2п+2- в своей работе Менделеев ограничивается углеводородами, немногими галогенопроизводными, а главным образом рассматривает кислородсодержащие органические соединения. Распределяя последние по предельности, Менделеев очень тонко пользуется понятиями теории типов о типическом и радикальном кислороде. Например, ангидрид уксусной кислоты и простые эфиры он относит к предельному ряду, а ангидриды двухосновных кислот и окись этилена к непредельному ряду СпХап. В этот же ряд оп помещает и альдегиды, хотя сомневается, не правильнее ли их отнести к предельному ряду. Мы видим, что теория пределов Менделеева позволяла до известной степени разобраться в предельности и непредель-ности органических соединений и даже в степени их неире-дельности, но основа ее — теория типов — предоставляла недостаточную возможность для кардинального разрешения этой проблемы. Характерно, например, то, что Менделеев к предельным соединениям причисляет два ряда углеводородов, которые только по теории типов могли считаться различными, а именно углеводороды, гомологичные болотному газу СпНап+з, и их производные, полученные путем замещения , и гомологи этила и метила (С Н2 1)з = СтЩт+г и их производные [там же, стр. 24]. [c.71]

    Гораздо легче выделяются сернистые соед1 нения прн мойке омеси бензольной, толуольной и ксилольной фракций, содержащей 4—бч/о непредельных соединений. Мойка такой фракции может быть проведена быстро, с меньшим расходом кислоты и с незначительным образованием омол. При этом тиофен и его гомологи образуют полимеры, растворимые в очищаемом продукте и переходящие в кубовые остатки при окончательной ректификации. Содержание серы в кубовых остатках поэтому может достигать 3—4о/о. [c.306]

    В течение ряда лет процесс получения этанола из этилена коксового газа методом сернокислотной гидратации изучался УХИНом в лабораторных условиях и на опытных полузавод-ских установках [130, 132]. Разработка процесса велась в двух вариантах — при обычном давлении и под давлением 5, 10 и 15 ат. Сущность процесса состоит в том, что коксовый газ, освобожденный от серы и остатков бензола и содержащий этилен, сжимается до 5—15 аг, после чего подвергается осушке и очистке от высших гомологов этилена (пропилен, бутилен и др.). Осушенный и очищенный коксовый газ промывается в этиленовых абсорберах в противотоке смесью этилсерной и серной кислот и затем, после нейтрализации от следов ЗС , направляется на дальнейшее использование. Этилсерная кислота подвергается гидролизу путем разбавления водой и нагревания паром. В результате гидролиза образуются спиртоводная смесь и отработанная серная кислота (45—47%-я). Из спиртоводной смеси отгоняется спирт-сырец, который после нейтрализации паров подвергается ректификации. Отработанная серная кислота поступает на реконцентрацию, где упаривается до 92%. Часть этой чки лоты 420 9 > подается на улавливание ла хаза пропилен а, а основное количество укрепляется до 97—98% и затемх возвращается в цикл улавливания этилена. Укрепление 92%-й кислоты цроизводится парами ЗОз, получаемыми от сжигания серы, извлеченной из газа в цехе сероочистки. [c.164]


    Спутниками этой группы, содержащими серу, являются сероуглерод (темп. кип. 46,3°), тиофен (темп. кип. 84°) и его гомологи. Сероуглерод отделяется при ректификации сырого бензола, тиофен — при обработке ароматических углеводородов концентрированной серной кислотой, с которой он образует тиофенсульфокислоту. [c.189]

    Возможность образования солеобразных соединений с участием водородной связи должна была проявиться и у других аминов, содержащих аминогруппы в -положении. Действительно, п-фенилендиамин с малеиновой кислотой дает глубокое изменение окраски и образование окрашенной в серо-синий цвет соли, по строению и составу аналогичной той, которая описана для бензидина. Возможно, что найденный нами метод определения цис-, транс-изомеров найдет себе применение для разделения циклогексан- и циклопропандикарбоновых кислот. Предельные дикарбоновые кислоты, не имеющие геометрических изомеров, подобного типа солей не образуют. Гомологический ряд предельных дикарбоновых кислот, начиная с щавелевой и кончая пимелиновой, образуют соли бензидина в соотношении 1 моль кислоты на 1 моль бензидина или 1 моль кислоты на 2 моля бензидина. Соли бензидина с указанными дикарбоновыми кислотами различаются по своему составу, растворимости в спирте, а часто и по кристаллической форме. Бензидиновая соль щавелевой кислоты (1 1). практически не растворима в спирте и выпадает в виде очень мелких кристаллов, не плавящихся до 400°. Указанные свойства щавелевой кислоты могут быть использованы для отделения ее от гомологов, образующих кристаллизующиеся из спирта соли с невысокой температурой плавления, в которых на 1 моль кислоты приходится 2 моля бензидина. Очевидно, щавелевокислая соль бензидина имеет цепеобразное строение и повышенный молекулярный вес, который мы не могли определить из-за нерастворимости соли. [c.511]


Смотреть страницы где упоминается термин Кислоты, образуемые серой и ее гомологами: [c.352]    [c.255]    [c.351]    [c.113]    [c.189]    [c.602]    [c.267]    [c.478]    [c.430]   
Смотреть главы в:

Неорганическая химия. Т.2 -> Кислоты, образуемые серой и ее гомологами




ПОИСК





Смотрите так же термины и статьи:

Гомологи

Гомологи гомология

Гомология

Сериал кислота



© 2025 chem21.info Реклама на сайте