Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия в ковалентных и ионных системах

    Поскольку оценка этих величин обычно сопряжена с большими трудностями, вопрос о проницаемости той или иной породы по данному механизму может быть решен либо в прямом эксперименте, либо на основе косвенных критериев. Так, если считать, что межзеренная энергия в ионно-ковалентных кристаллах в грубом приближении равна половине поверхностной, то комбинация соотношений Гиббса — Смита и Гриффитса приводит к выводу, что проникать в поликристаллы могут жидкости, снижающие их прочность не менее, чем вдвое. С учетом уравнения Юнга легко показать, что межзеренная пропитка наиболее вероятна в системах, в которых наблюдается полное растекание по свободной поверхности. Отсюда ясно, что при обычной температуре межзеренное проникновение воды и водных растворов должно быть свойственно породам типа калийных и натриевых солей. [c.99]


    Как показывают термодинамические и модельные расчеты, энергия взаимодействия катионов и анионов с дипольными молекулами растворителя (энергия сольватации) во многих случаях оказывается достаточной для того, чтобы компенсировать энергию электростатического взаимодействия ионов в ионных кристаллах (энергию кристаллической решетки) или энергию ковалентной связи атомов в таких молекулах, как НС1 илн НВг. В результате растворы электролитов являются устойчивыми ионными системами, содержащими сольватированные катионы и анионы. [c.75]

    При выводе количественных характеристик сравнительной металлоидной активности галоидов в отсутствие воды вместо энергий гидратации должны учитываться энергии связей (в ковалентных системах) или энергии кристаллических решеток (в ионных системах). Как показывает приводимое ниже примерное сопоставление, все эти величины изменяются приблизительно однотипно  [c.276]

    Неионные соединения, т. е. соединения, в которых атомы связаны ковалентными связями, образуют кристаллы, в которых структурными единицами являются молекулы. Для того чтобы вещество расплавилось, необходимо преодолеть силы, удерживающие эти молекулы вместе. Как правило, эти межмолекулярные силы очень слабы по сравнению с силами, которые удерживают вместе ионы. Чтобы расплавить хлористый натрий, необходима энергия разрыва ионных связей между Na+ и l. Чтобы расплавить метан СН4, нет необходимости сообщать системе энергию разрыва ковалентных связей углерод — водород, а необходима только энергия отрыва молекул метана друг от друга. В противоположность хлористому натрию метан плавится при —183 °С. [c.29]

    Предлагаемая теория химическая связь обусловливается свободной энергией системы ядер и электронов. В обычных условиях роль энтропийного члена невелика, и энергия ковалентной химической связи определяется притяжением ядер к электронам между ними. При термическом разрыве связи определяющий вклад в энергию диссоциации вносит энтропийный член (в первом приближении ТЛ5). Соответственно между всеми химическими частицами (кроме одноименных ионов) существует притяжение, обусловленное электростатикой. Химическая связь образуется при сближении химических частиц иа расстояния, нри которых энергия притяжения становится соизмеримой с энергией теплового движения. Так как образование связей происходит под действием центральных сил, соединенные ядра движутся вокруг общего центра масс по эллиптическим орбитам. [c.138]


    В соответствии с положением в периодической системе, атомы металлов имеют небольшое число валентных электронов и много незаполненных орбит. Кроме того, валентные электроны достаточно слабо связаны со своими ядрами и поэтому обладают большой свободой перемещения в кристаллической решетке металла. Следовательно, обшая картина металлического состояния может быть представлена в следующем виде. Узлы кристаллической решетки металла заняты как отдельными атомами, так и ионами, между которыми сравнительно свободно перемещаются электроны, называемые иногда электронным газом. Поскольку валентные электроны распределены в кристалле металла почти равномерно, невозможно говорить о какой-либо направленности металлических связей. В этом состоит их важное отличие от ковалентных связей, которые имеют строгую направленность в пространстве. Металлическая связь отличается от ковалентной также и своей прочностью ее энергия в 3—4 раза меньше энергии ковалентной связи. Существование подвижных электронов в кристалле металлов объясняет их многие характерные особен ности (электропроводность, теплопроводность). [c.62]

    Энергия ковалентной связи нне в ННе равна взятой со знаком минус разности энергий иона ННе+ и системы Н + Не+ тогда [c.160]

    Сольватация тесно связана с процессом растворения. Вообще говоря, сольватация включает все типы взаимодействия между растворителем и ионами или молекулами растворенного вещества, поскольку нельзя провести никакого различия между свободными молекулами растворителя и молекулами растворителя, связанными с ионами или молекулами растворенного вещества (см. стр. 26 в работе [294]). Ионы или полярные молекулы в полярном растворителе ориентируются под действием электростатических сил, их энергия уменьшается и система становится более устойчивой. Величины энергии сольватации часто имеют тот же порядок, что и энергия ковалентных связей. Когда катионы или льюисовы кислоты сольватируются нуклеофильным растворителем, молекулы размещаются таким образом, что сольватируемые частицы окружаются оболочкой, вплоть до образования ковалентной связи электронодефицитные молекулы растворителя, не содержащие подвижного водорода (например, жидкая двуокись серы), взаимодействуют с электронодонорными анионами. В случае растворителей, содержащих подвижные, или кислые , атомы водорода, сольватация аниона может быть связана с кислотностью растворителя или его способностью образовывать водородную связь (ср. гл. 6, разд. 38,а и стр. 47 в работе [393]). Устойчивость образующихся таким образом аддуктов может быть самой различной. Вследствие энергетических затрат на образование водородных связей этот процесс понижает свободную энергию, например, аминов или амидов кислот отсутствие образования Н-связей увеличивает основность. Таким образом, становится понятным, что сила кислот и оснований в водных растворителях не всегда сравнима с этими Нле характеристиками, определенными в неводных растворителях. [c.99]

    С другой стороны, адсорбционная теория опирается на тот факт, что большинство металлов, подчиняющихся определению 1, являются переходными металлами в периодической системе (т. е. они имеют электронные вакансии или неспаренные электроны в -оболочках атома). Наличие неспаренных электронов объясняет образование сильных связей с компонентами среды, особенно с Оа, который также содержит неспаренные электроны (что приводит к появлению парамагнетизма) и образует ковалентные связи в дополнение к ионным. Кроме того, переходные металлы имеют высокую температуру возгонки по сравнению с непереходными, что благоприятствует адсорбции компонентов окружающей среды, так как атомы металла стремятся остаться в кристаллической решетке, а образование оксида требует выхода из нее. Образование химических связей при адсорбции кислорода переходными металлами требует большой энергии, поэтому такие пленки называются хемосорбционными, в отличие от низкоэнергетических пленок, называемых физически адсорбированными. На поверхности непереходных металлов (например, меди и цинка) оксиды образуются очень быстро и любые промежуточные хемосорбционные пленки являются короткоживущими. На переходных металлах хемосорбированный кислород термодинамически более стабилен, чем оксид металла [22]. Многослойная адсорбция кислорода, характеризующаяся ослаблением связей с металлом, приводит с течением времени к образованию оксидов. Но подобные оксиды менее существенны при объяснении пассивности, чем хемосорбционные пленки, которые продолжают образовываться в порах оксида. [c.81]

    Оказалось, что основной вклад вносит лишь одна из приведенных структур. Согласно Полингу, энергию связи гипотетического ковалентного соединения А—В можно вычислить из энергий связи в молекуле А— А и В—В. Разность между истинной (экспериментальной) энергией связи и гипотетической (вычисленной) может рассматриваться как мера ионного характера валентной структуры. Одновременно повышается устойчивость системы, так как для ионных валентных структур всегда имеет место понижение энергии. Если энергии связи А—А и В—В мало отличаются, то энергию связи 1 а-в можно найти как среднее арифметическое и И в-в в противном случае WA-в — среднее геометрическое этих величин УВ а-а И в-в- Полинг предложил эмпирическое уравнение, в соответствии с которым уменьшение энергии связи (заметим, что здесь не употребляется термин резонансная энергия ) [c.102]


    При взаимодействии мягких анионов (например, Вг", 1 , N ) с типично мягкими катионами (например, d2+, Hg +, Pd +) термодинамические соотношения становятся совсем другими. Распад сравнительно рыхлой гидратной оболочки вокруг ионов не требует больших затрат энергии наоборот, образование ковалентных связей сопровождается значительным выделением энергии, поэтому ДЖО. Изменение энтропии, напротив, невелико. Увеличение энтропии в результате отщепления гидратной воды почти полностью компенсируется уменьшением количества частиц в системе при образовании комплекса катион — анион. [c.402]

    Система электрон-Ь вакантная орбиталь (1-1-0) (схе- до до МО ма 4.5). В этой системе на связывающей МО располагается всего лишь один электрон. Порядок образующейся Схема 4.5.. ковалентной связи при этом равен 0,5 и, соответственно, ковалентность каждого атома равна 0,5. Так образуется молекулярный ион водорода Н . Схематично такая связь обозначается штрих-чертой Н---Н. Штриховая линия отражает то, что данная связь слабее одинарной ковалентной связи. Энергии связей, образующихся в результате (И-О)-взаимодействия, почти в 2 раза меньше, чем в предыдущем случае — взаимодействия (1-1-1). [c.119]

    Состояние химических систем (как и любых других систем) может изменяться. Такие изменения называются процессами. Понятие процесса является одним из наиболее фундаментальных понятий для физической химии. Следует подчеркнуть, что строение и свойства химических систем проявляются именно в изменениях состояний систем. С химической точки зрения особый интерес представляют такие процессы, в которых происходит глубокая перестройка электронных состояний, сопровождаемая перегруппировкой ядер, так что из одних устойчивых одно- или многоатомных частиц образуются другие. В многокомпонентной макроскопической системе эти процессы приводят к химическому превраш,ению, в результате которого некоторые химические соединения — исходные веш,ества, или реагенты, превращаются в другие химические соединения — продукты. Химическую природу имеют также и многие другие явления, происходящие в химической системе, такие, как растворение, испарение ковалентных и ионных кристаллов и др., так как они также сопровождаются существенной перестройкой электронных оболочек. Как правило, химические превращения сопровождаются процессами, которые принято относить к области молекулярной физики переносом вещества и зарядов, переносом энергии термического возбуждения (теплоты) и др. [c.186]

    Исследования электрической проводимости растворов, а также изучение спектров ЭПР показало, что в системах типа ионы — растворитель наряду со свободными ионами существуют и ионные пары , которые движутся как одно целое и не дают вклада в проводимость. Представление о ионных парах в 1924 г. были выдвинуты В. К. Семеновым и в 1926 г. Бренстедом. Одно из первых наблюдений, подтвердивших теорию ионных пар, было сделано Крауссом, обнаружившим, что хлорид натрия в жидком аммиаке сравнительно слабо проводит ток. Бьеррум указал, что, увеличивая расстояние между ионами, можно определить некоторое критическое его значение, такое, что ионы, удаленные на расстояние, большее критического, почти свободны, а ионы, находящиеся друг от друга на меньшем расстоянии, связаны. В настоящее время ионные пары рассматривают как частицы, обладающие совокупностью индивидуальных физико-химических свойств, находящиеся в термодинамическом равновесии со свободными ионами. Энергия связи в ионных парах в основном электростатическая, хотя дипольные и дисперсионные силы также вносят некоторый вклад в энергию взаимодействия. Несомненно и то, что свободные ионы в общем случае нарушают структуру растворителя, в результате чего достигается дополнительная стабилизация ионных пар. Если исходные молекулы растворяемого вещества содержат ковалентные связи А В, то образование ионной пары А+, В- может стимулироваться действием растворителя стабилизация пары достигается за счет энергии ее сольватации. Важную роль при этом играет способность молекул растворителя проявлять донорно-акцепторные свойства. Так, перенос электронного заряда на А, естественно, облегчает перенос а-электрона от А к В, что создает условия для гетеролитического разрыва связи А В и способствует возникновению ионной пары. Этот вопрос в более широком плане обсуждается в концепции, развитой В. Гутманом. [c.259]

    Недостатком ТКП является полное игнорирование ковалентного вклада в образование координационных соединений. Поэтому наиболее эффективным подходом к описанию свойств комплексных соединений является учитывающий одновременно ионный и ковалентный вклад в, образование связи метод молекулярных орбиталей (ММО). Согласно этой теории химическая связь в комплексных соединениях осуществляется электронами, находящимися не на АО, локализованных только около центрального атома и данной рассматриваемой группы, а комплексообразование происходит в результате образования новых молекулярных орбиталей (МО), каждая из которых простирается на все ядра системы. Форма и энергия этих новых МО, каждая из которых может содержать не более двух электронов в соответствии принципом Паули, зависит от характера взаимодействующих АО. [c.384]

    Электровалентность проявляется чаще всего в соединениях, содержащих элементы I, II, VI и VII групп, поскольку здесь для достижения заполненной оболочки необходимо отдать или принять не более двух электронов. Для отрыва от катиона (или присоединения к аниону) большего числа электронов требуется дополнительная затрата энергии, именно поэтому истинные частицы типа АР+ или встречаются крайне редко. Ковалентность, которая избегает образования таких высокозаряженных частиц, встречается главным образом в соединениях, содержащих элементы центральных групп (III—V) периодической системы. Получить при нормальных условиях ионы С + или С невозможно. Это приводит к принципиальному выводу органическая химия — это химия соединений углерода, являющихся практически всегда ковалентно построенными молекулами. [c.14]

    Если теперь вспомнить, что говорилось в 4 предыдущей главы, то первое и второе слагаемые в квадратных скобках правой части последнего равенства отвечают ионным валентным схемам, тогда как третье слагаемое - ковалентной схеме. В отличие от того, что получалось в методе валентных схем, коэффициенты перед этими слагаемыми в рамках метода Хартри-Фока, или метода молекулярных орбиталей, жестко фиксированы (равны в данном случае друг другу) и не меняются при изменении межъядерного расстояния. В частности, при оо в энергию системы будут давать вклад все три слагаемых, что означает, что на диссоциационном пределе энергия будет содержать составляющие, обусловленные ковалентными и ионными членами, т.е. физическая картина получается неверной должны были бы присутствовать лишь члены, отвечающие диссоциации либо на два атома, либо на анион Н и катион (протон). [c.303]

    Для грубой оценки предположим, что любая связь с энергией менее 10 кДж моль — слабая, и будем отличать такую связь от типичных ионных или ковалентных связей, энергия которых > 200 кДж-моль . Обычно слабые связи — это связи, образованные между системами, которые порознь химически стабильны. [c.351]

    Молекула не имеет заряда, но поляризуется, так как при тесном сближении атомов разных элементов происходит некоторое смещение электронной плотности в ней и соответствующие участки молекулы приобретают отрицательный и положительный заряды, т. е. молекула становится диполем. Возникает дополнительная ионная составляющая межатомной связи, которая увеличивает прочность последней, притом не только на величину энергии электростатического взаимодействия данных зарядов, но еще и за счет повышения энергии самой ковалентной связи, эффективность которой возрастает благодаря уменьшению межатомного расстояния, обусловленному проявлением ионной составляющей связи. В результате этого потенциальная энергия данной электронноядерной системы снижается. [c.83]

    При в > воде количественных характеристик сравнительной металлоидной актив Ости галогенов в отсутствие воды вместо энергий гидратации должны учитываться Э1 сргии связей (в ковалентных системах) или эиер1ии кристаллических решеток (в ионных системах). Как показывает приведенное ниже примерное со-поставленне, все эти величины изменяются приблизительно 0Д110Т1Ш ю  [c.205]

    Образуют ли атомы неограниченнуй ковалентный, ионный, металлический или молекулярный кристалл, зависит от того, какому из указанных состояний отвечает минимум энергии системы. [c.48]

    Если в образовании связей участвовала электронная конфигуг рация углерода, изображенная в табл. 2, следовало бы ожидать образования двух ионных или ковалентных связей. Можно представить себе более выгодную электронную конфигурацию, при которой возможно образование четырех ковалентных связей. Один из двух 25-электронов распаривается и переходит на свободную 2рг-орбиталь. Это требует затраты энергии. Новая тетраэдрическая система орбиталей создается за счет повышения энергии [c.271]

    Следовательно, для межионных расстояний менее 114,7 А эта кулоновская стабилизация достаточна для образования ионной системы цезий — хлор более низкой энергии, так что ионная пара существует в газообразном состоянии. Для других систем это предельное расстояние значительно меньше, например 10,6 А в случае системы натрий — хлор, и так как наблюдаемые расстояния в парах этих веществ равны 2,90 А для хлорида цезия и 2,36 А для хлорида натрия, то, очевидно, ионные пары должны существовать. Эти соотношения удобно представлены на рис. 3.1, на которо.м приведена схематическая кривая зависимости потенциальной энергии сисгем Кг(г)+С1(г) и Ма+(г)-ЬС1 (г) от расстояния г. Для обеих систем потенциальная энергия уменьшается при сблил<ении ато.чов или ионов. В случае ионов это обусловлено кулоновской стабилизацией, в случае атомов это вызвано образованием слабой ковалентной связи. В обоих случаях при малых расстояниях орбитали обоих атомов или ионов приходят в непосредственную близость и отталкиваются друг от друга. В этом причина очень быстрого увеличения энергии, наблюдаемого для малых значений г. В. минимуме кривой это отталкивание точно уравновешивает кулоновское притяжение и соответствующее значение г представляет собой равновесное расстояние между ионами в ионной паре. [c.70]

    Вследствие молекулярного движения система, состоящая из молекул растворителя и сольватированных молекул растворенного вещества, находится в состоянии динамического равновесия, т. е. между ними происходит постоянный обмен и индивидуальные сольваты имеют сравнительно небольшое время жизни, зависящее от их прочности и от температуры. В некоторых случаях возникающие между растворителем и растворенным соединением взаимодействия настолько сильны, что они облегчают гетеролитический распад молекулы на ионы суммарно энергия таких взаимодействий лишь незначительно отличается от энергии ковалентной связи (при этом возрастает энтропия системы). [c.230]

    Электронные плотности были получены из волновых функций, рассчитанных для невзаимодействуюш их молекул НдО и иона Н3О+, для которого принимается плоская треугольная структура (см. раздел, в котором рассматривается пирамидальный угол НОН, стр. 67). Из этих электронных плотностей может быть рассчитано электростатическое взаимодействие между молекулами. Оно определяется ион-ионными членами, одноэлектронными, двух- и трехцентровыми интегралами, а также рядом двухэлектронных, двух-, трех- и четырехцентровых интегралов. Таким образом можно определить кулоновское взаимодействие или электрическую энергию между двумя системами, причем предполагается, что они не взаимодействуют. Однако системы будут поляризовать друг друга и соответствуюш,ие изменения их конфигурации будут вызывать дальнейшее уменьшение обш,ей энергии. Грэи рассматривает три вида этих изменений, вызванных поляризацией а) изменения в межатомных расстояниях, составляюш,их комплекс молекул б) изменения в функциях электронной плотности (электронной поляризации) и в) эффекты обменных сил ковалентного связывания (см. также [100]) в водородных связях Н3О+— HjO. Фактор а можно не принимать во внимание, так как вызываемые им эффекты будут близки к ошибкам в определении межатомных расстояний невозмущенной конфигурации Н3О+ — HgO. Для упрощения трактовки поляризации, указанной в пункте б , примем, что можно пренебречь 1) частичным перекрыванием атомных орбиталей разных молекул и 2) прямым взаимодействием между молекулами воды в комплексе, т. е. диполь-дипольным взаимодействием (см. [58]). Приближение 1 предполагает, что симметричные орбиты (т. е. орбиты, выбранные в соответствии с симметрией og/j для Н3О+ и 2V для Н2О) не смешиваются в молекулярных орбитах друг с другом и ни одна из них не является симметричной орбитой для других молекул воды. Взаимодействие, которым пренебрегли в пункте 2, не включено непосредственно в систему водородных связей 0+ — Н — О и может быть просто добавлено к общей энергии после того, как будет учтено электронное взаимодействие. Подобным же образом можно рассчитать вклад ковалентной [c.86]

    Правила связывания — их называют правилами валентности — появились во второй половине XIX в. Эти эмпирические правила получили систематическое обоснование, когда стало очевидным значение периодической системы как направляющего принципа новой теории. Был сделан большой шаг вперед получение, исследование и практическое использование новых, не встречающихся в природе соединений стало повседневной практикой. Этот успех в свою очередь привел к необходимости объяснения с точки зрения правил валентности огромного, все возрастающего количества новых химических данных. Чтобы справиться с этими новыми фактами, правила валентности приходилось все более и более усложнять. Поскольку общей фундаментальной теории, объединяющей все эти данные, не было, химикам пришлось ввести классификацию соединений по типу связи . К концу первой половины XX в. химики манипулировали сложным списком, включающим ковалентные, ионные, йеталлические, координационные, дативные, хелатные, мости-ковые, одноэлектронные, водородные связи и связи с переносом заряда. Химическую связь объясняли обобществлением электронов, обменными силами, спариванием спинов, перекрыванием , сте-рическими соображениями и понижением кинетической энергии. С помощью периодической системы все это было приведено в какое-то подобие рабочего порядка. Каждому работающему химику приходилось знать эту сложнейшую систему наизусть — это давало возможность хотя бы интуитивно предвидеть, какой химический состав и какой тип химической связи можно ожидать при синтезе новых соединений. Отсутствие подхода, основанного на более общих соображениях аЬ initio, или из первых принципов , вызывало презрение физиков-теоретиков впрочем, извиняться химики не собирались, да в этом и не было надобности. К 1950 г. было синтезировано около миллиона соединений и число новых соединений возрастало со скоростью двух или трех сотен в день. [c.8]

    Соли Ре + во мнбгом похожи на соли Mg +, что обусловлено близостью радиусов ионов (у Nig + г, = 66 пм, у Ре + п — 74 пм] , Это сходство относится к свойствам, определяемым, в основном, межионными и ион-дипольными взаимодействиями (кристаллическая структура, энергия решетки, энтропия, растворимость в воде, состав и структура кристаллогидратов, способность к комплексообразованию с лигандами, обладающими слабым полем). Наоборот, не проявляется аналогия в свойствах, связанных с электронными взаимодействиями (способность к реакциям окисления-восстановления, образование комплексов со значительной долей "ковалентной связи). На рис. 3.127 сопоставлены энтропии кристаллических соединений Ре + и М +. При сравнении рис. 3.127 и 3.125 прослеживается степень сходства и различия двухвалентных состояний элементов семейства железа между собой и между Ре и Мд, принадлежащим к разным группам периодической системы элементов. [c.562]

    СЫ- или СО),, т. е. имеет место делокализация электронов, можно показать с помощью спинрезонансной спектроскопии. Необходимо построить молекулярные орбитали комплексных соединений подобно тому, как это было показано при рассмотрении молекулярных орбиталей СН4 (разд. 6.3.4). Для этого берутся определенные линейные комбинации молекулярных орбиталей лигандов, которые имеют такую же симметрию, как и атомные -орбитали центрального иона. Линейные комбинации для октаэдрических комплексов приведены в табл. А.28, а в более наглядном виде—на рис. А.58. (Индексы симметрии а1е, е , (ы и т. д. взяты из системы обозначений, принятых в теории групп, и здесь не обсуждаются.) Молекулярные орбитали комплексных соединений образуются линейной комбинацией таких атомных орбиталей металла и орбиталей лиганда, которые имеют одинаковую симметрию, так как в этом случае наблюдается максимальное перекрывание. Результаты энергетических расчетов молекулярных орбиталей представлены на рис. А.59. Разрыхляющие орбитали отмечены звездочкой. Заполнение электронами происходит, как обычно, попарно. Если в образовании связи принимают участие-12 электронов от шести октаэдрических лигандов и п -электронов металла, то первые заполняют связывающие и- и -орбитали, а -электроны — несвязывающие t2e- и разрыхляющие вг -орбитали. Последние две молекулярные орбитали играют ту же роль, как и в теории поля лигандов. Их расщепление также обозначают 10/) , хотя на энергию расщепления влияет перекрывание при образовании ковалентных связей. [c.136]

    I описывает основное состояние молекулы >1аС1, диссоциирующей на атомы. Почему именно такой вид имеет кривая, нетрудно понять. При медленном (так называемом адиабатическом ) сближении атомов натрия и хлора, следуя по этой кривой, система все время избирает путь наименьшей энергии, т. е. наибольшей устойчивости. От бесконечности до области вблизи точки пересечения взаимодействие атомов носит в основном ковалентный характер, левее этой области электронная плотность успевает перераспределиться так, что реализуется взаимодействие, близкое к ионному. Истинная потенциальная кривая вблизи равновесного расстояния очень близка к кривой идеальной ионной молекулы, это объясняет удачный расчет на основе ионной модели ряда молекулярных параметров. [c.166]

    Азот и фосфор являются элементами УА группы периодической системы Д. И. Менделеева. На внешнем энергетическом уровне атомов этих элементов находится пять электронов из них три р-электрона. Поэтому в нормальном состоянии они проявляют валентность, равную трем. Наибольшее изменение в химических свойствах элементов УА группы наблюдается при переходе от азота к фосфору. В атомах азота внешним энергетическим уровнем является второй, содержащий только 5- и р-поду ровни, а подуровень с1 отсутствует. Атомы азота при переходе в возбужденное состояние могут увеличить число непарныхэлектронов максимум до четырех и при этомза счет потери одного электрона. В этом случае образуется электронная конфигурация а азот становится четырехвалентным, как в ионе [ЫН4] . Поэтому азот не проявляет валентности, равной пяти. В атомах фосфора наружным энергетическим уровнем является третий, состоящий из трех подуровней з, р и й. При возбуждении атомов фосфора увеличение числа непарных электронов происходит за счет использования -подуровня с образованием электронной конфигурации поэтому фосфор в отличие от азота может проявлять валентность, равную пяти. Размеры атомов азота и фосфора меньше, а энергия ионизации этих элементов соответственно больше, чем углерода и кремния. В связи с этим азот и фосфор при химических реакциях не теряют электронов и не превращаются в элементарные катионы. Сродство к электрону этих элементов незначительно и поэтому они, как правило, не превращаются и в элементарные анионы. Азот и фосфор образуют соединения как с кислородом, так и с водородом, только с ковалентными связями. Таким образом, азот и фосфор являются неметаллами. Причем свойства неметаллов у них выражены сильнее, чем у углерода и кремния. [c.213]

    Так, с увеличением иона галогена уменьшается прочность решетки в ряду NaF—Nal. Также с увеличением размеров атомов ослабевает связь в атомных ковалентных веществах (С—Ge) или в металлах без d-AO (Li— s). В то же время при таком же движении в группах периодической системы сверху вниз возрастает энергия связи в переходных металлах (Сг—W), а также в случае молекулярных веществ с ван-дер-ваальсовыми связями (Не—Rn, Н2О—HjTe). В последней группе благодаря наличию водородных связей особняком стоит вода. [c.146]

    Знак теплового эффекта при растворении определяется соотношением энергии гидратации АЯл гидр + АЯвгидр и энергии атомизации и. Если энергия гидратации превышает энергию атомизации, т. е. АЯл гидр + АЯв гидр> /, то АЯраств<0 (процессе растворения экзотермичен). Если же АЯл гидр + АЯв гирд< /, то АЯраств>0 (процесс эндотермичен). Здесь используется термодинамическая система знаков. С термодинамической точки зрения растворение всегда сопровождается убылью изобарно-изотермического потенциала (свободной энергии Гиббса). При этом независимо от знака энтальпии при растворении всегда А0<0, так как переход вещества в раствор сопровождается значительным возрастанием энтропии вследствие стремления системы к разупорядочению. В рассмотренном примере исходное вещество АВ может быть молекулярным, кристаллическим (ионным и ковалентным), а А и В могут быть атомами, ионами, молекулами. Таким образом, термохимический подход для оценки тепловых эффектов растворения является общим. [c.245]

    Для третьей группы катионов (во внешней электронной оболочке находится 18 или 18 + 2 электронов) характерны иные зависимости. Большое число электронов во внешней оболочке способствует их сравнительно легкой деформируемости и поляризуемости. Жесткость электронной оболочки не так велика, как у катионов первой группы. В комплексах катионов третьей группы преобладает ковалентная связь, осуществляемая парой электронов, находящихся в совместном владении катиона металла и лиганда. Поэтому во многих случаях изменение устойчивости комплексов катионов элементов одной и той же группы периодической системы хорошо коррелирует со способностью этих катионов к образованию ковалентной связи. С количественной стороны способ1Юсть к образованию ковалентных связей можно описать ковалентной характеристикой, предложенной К. Б. Яци-мирским для объяснения растворимости некоторых малорастворимых соединений. Ковалентная характеристика представляет собой разность между энергией ионизации атома и теплотой гидратации образующегося иона. Чем больше энергия ионизации, тем больше энергии выделяется при обратном процессе — присоединении к нону электронов, которые отдает лиганд при образовании комплексного иона. С другой стороны, чем меньше теплота гидратации, тем меньше [c.254]

    АЗОТ (от греч а-- приставка, здесь означающая отсутствие, и 2оё-жизнь, лат Nltrogenшm от nitrum - селитра и греч gennao-рождаю, произвожу) N, хим элемент V гр периодич системы, ат н 7, ат м 14,0067 Прир А состоит из двух стабильных изотопов-(99,635%) и (0,365%) Конфигурация внеш электронной оболочки 2s 2p , степень окисления от -Ь 5 до — 3, энергия ионизации при последоват переходе от N к N соотв 14,533, 29,600, 47,454, 77,470, 97,886, 552,070, 667,010 эВ, электроотрицательность по Полингу 3,05, радиусы ковалентный 0,074 нм, Ван-дер-Ваальса 0,15 нм, ионные (в скобках указаны координац числа) для 0,132 нм (4), для 0,030 нм (6), для 0,004 нм (3) и 0,027 нм (6) [c.58]

    БОР (от позднелат. borax-бура лат. Borum) В, хим. элемент III гр. периодич. системы, ат. н. 5, ат. м. 10,811. Прир. Б. состоит из двух стабильных изотопов- В (19,57%) и В i80,43%). Поперечное сечение захвата тепловых нейтронов В 3-10 м "В 4-10 м1 Конфигурация внеш. электронной оболочки 2s 2p степень окисления + 3, редко + 2 энергия ионизации при последоват. переходе от B к В соотв. 8,29811, 25,156, 37,92, 259,30 и 340,13 эВ атомный радиус 0,097 нм, ковалентный 0,088 нм, металлический 0,091 нм, ионный В 0,025 нм (координац. число 4). [c.299]

    ГАЛОГЕНЫ (от греч. hals, род. падеж halos-соль и -genes-рождающий, рождённый) (галоиды), хим. элементы главной подгруппы VTI гр. периодич. системы фтор, хлор, бром, иод и астат. Молекулы двухатомны. Внеш. электронная оболочка атомов имеет конфигурацию s p . С увеличением ат. массы Г. возрастают их ионный и ковалентный радиусы, уменьшаются энергии ионизации и электроотрицательность (см. табл.). [c.497]

    КРЕМНИЙ (Sili ium) Si, химический элемент IV ф. периодич. системы, ат. н. 14, ат. м. 28,0855. Состоит из трех стабильных изотопов Si (92,27%), Si (4,68%) и Si (3,05%). Поперечное сечение захвата тепловых нейтронов 1,3 10 м . Конфигурация внещ. электронной оболочки 3i 3p степень окисления +4 (наиб, устойчива), +3, +2 и + 1 энергии ионизации при последоват. переходе от Si к Si соотв. 8,1517, 16,342, 33,46 и 45,13 эН сродство к электрону 1,22 эВ злектроотрицательность по Полингу 1,8 атомный радиус 0,133, ионный радиус Si (в скобках указаны координац. числа) 0,040 нм (4), 0,054 нм (6), ковалентный-0,1175 нм. [c.508]

    РТУТЬ (Hydrargyrum), Hg, хим. элемент II гр. периодич. системы, ат.н. 80, ат.м. 200,59. Природная Р. состоит из семи стабильных изотопов Hg (О 146%), Hg (10,02%), "" Hg (16,84%), " Hg (23,13%), Hg (13,22%), " "Hg (29,80%), " " Hg (6,85%). Поперечное сечение захвата тепловых нейтронов Для прир. смеси изотопов 38 10 " м". Кон( <игурация внеш. электронных оболочек атома степень окисления + 1 и + 2 энергии ионизации Hg Hg+-.Hg" ->Hg2" соотв. 10,4376, 18,756 и 34,2 эВ сродство к. электрону — 0,19 эВ работа выхода электрона 4,52 эВ электроотрицательность по Полингу 1,9 атомный радиус 0,155 нм, ковалентный радиус 0,149 нм, ионный радиус (в скобках указано координац. число) Hg 0,111 нм (3), 0,133 нм (6), Hg"+ 0,083 нм (2), 0,110 нм (4), 0,116 нм (6), 0,128 нм (8). [c.278]

    РУБЙДИЙ (от лат. rubidus-красный rubidium) Rb, хим. элемент I гр. периодич. системы, ат. н. 37, ат, м. 85,4678 относится к щелочным металлам. В природе встречается в виде смеси стаб. изотопа Rb (72,15%) и радиоактивного Rb (27,85% 4,8-10 лет, Р-излучатель). Поперечное сечение захвата тепловых нейтронов для прир. смеси 0,73 10 м . Конфигурация внеш. электронной оболочки атома 5s степень окисления -fl энергии ионизации Rb° - Rb" - Rb 4,17719 эВ, 27,5 эВ сродство к электрону 0,49 эВ электроотрицательность по Полингу 0,8 работа выхода электрона 2,16 эВ металлич. радиус 0,248 нм, ковалентный радиус 0,216 нм, ионный радиус Rb 0,166 нм (координац. число 6), 0,186 нм (12). [c.282]


Смотреть страницы где упоминается термин Энергия в ковалентных и ионных системах: [c.257]    [c.52]    [c.365]    [c.408]    [c.276]    [c.276]    [c.98]    [c.273]    [c.536]    [c.295]    [c.223]   
Основы общей химии Т 1 (1965) -- [ c.276 ]




ПОИСК





Смотрите так же термины и статьи:

Ионы энергия,

Ковалентность

Энергия ионно-ковалентная

Энергия ионов



© 2025 chem21.info Реклама на сайте