Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коэффициент противотоке

    Это — минимальные коэффициенты противотока в промывном и экстракционном каскадах соответственно. Уравнение (6. 42) показывает, что когда [c.228]

    У теплообменников с Комбинированным течением обеих жидкостей расчет средней разности температур является очень сложным. Поэтому можно для обычно встречающихся в практике случаев определять среднюю разность температур при помощи поправочного коэффициента к среднелогарифмической разности температур, подсчитанной для чистого противотока. [c.19]


    Эффективность процесса абсорбции можно охарактеризовать и коэффициентом насыщения, представляющим собой отношение количества фактически поглощенного компонента к тому количеству, которое было бы поглощено в случае противотока при максимально возможном насыщении жидкости, т. е. когда концентрация уходящей жидкости Хр(у ) находилась бы в равновесии с концентрацией поступающего газа у . [c.79]

    В связи с этим воздух, поступающий в камеру сгорания газотурбинного двигателя, обычно делят на три потока. Первый поток поступает в камеру сгорания, имеющую завихритель (рис. 3.27), через кольцевой зазор между корпусом форсунки и внутренним кольцом завихрителя, чем обеспечивается охлаждение форсунки. В этой зоне топливо распыляется, частично испаряется и воспламеняется а составляет 0,2—0,5 [166]. Второй поток воздуха вводят в зону горения через завихритель и через первые ряды отверстий диаметром 12—30 мм в жаровой трубе. Этот воздух обеспечивает сгорание смеси при температуре во фронте пламени, равной 2300—2500 К, и последующее снижение температуры газов до 2000 К- Коэффициент избытка воздуха при этом возрастает до 1,2—1,7. Роль завихрителя заключается в закручивании потока воздуха и создании воздушного вихря, вращающегося вокруг оси жаровой трубы. При этом в центральной части трубы создается зона пониженного давления, куда устремляется поток из средней части камеры сгорания. Продукты сгорания, движущиеся противотоком к основному потоку распыленного топлива, ускоряют испарение и обеспечивают нагревание топливо-воздушной смеси до температуры воспламенения. Турбулизация газо-воздушного. потока приводит к увеличению скорости распространения пламени, а уменьшение осевой скорости воздуха вблизи границы зоны обратных токов удерживает факел в определенной области. Третий поток воздуха поступает через задние ряды боковых отверстий в зону смешения. Этот воздух снижает температуру газов до значения, допустимого по условию прочности лопаток турбины. [c.164]

    Кинетические коэффициенты процессов тепло- и массообмена, а также химических реакций, базирующиеся на модели идеального противотока, характеризуют не истинные, а лишь кажущиеся скорости протекания этих процессов и не могут быть приняты ни для моделирования и масштабирования лабораторных моделей, ни для оценки эффективности действующих, а также выбора и проектирования новых промышленных аппаратов. Надежными являются лишь те кинетические параметры и зависимости, которые [c.8]


    Принципиальным недостатком процессов в псевдоожиженном слое является режим, близкий к режиму идеального перемешивания. Коэффициент использования катализатора при таком режиме относительно низок. Для устранения этого недостатка была предложена схема реакторного блока, в котором общий объем псевдо-ожиженного слоя катализатора распределяется по тарелкам пары или газы в нем движутся противотоком к гранулированному материалу. Эскиз ступенчато-противоточного реактора показан на рис. 20. По данным [12], интенсивность регенерации в этом аппарате в 9—12 раз, а интенсивность крекинга в 2—3 раза выше, чем в обычном. [c.57]

    Ориентировочные значения коэффициентов теплопередачи приведены в табл. 6.2, а коэффициентов теплоотдачи — в табл. 6.3. Средняя разность температур при прямотоке или противотоке теплоносителей равна [c.147]

    Из приведенных в таблице данных можно сделать вывод, что при низких значениях уг (модуль работает на исчерпывание целевого компонента) противоточная схема более выгодна и в отношении более высокой концентрации пермеата, и в отношении производительности модуля. При более высоких значениях Уг организация потоков в напорном и дренажном пространствах практически не влияет на эффективность работы модуля с асимметричными или композиционными мембранами (в том числе и в виде полых волокон). На рис. 5.14 представлены результаты расчетов модуля с полыми волокнами, причем расчет проведен как для симметричных (сплошных), так и для асимметричных волокон. Расчетные данные подтверждаются результатами экспериментов, проведенных на модуле с асимметричными полыми волокнами, особенно при малых значениях коэффициента деления потока 0. При больших значениях 0, равных 0,24—0,28, результаты экспериментов для прямо- и противотока не совпадают, что можно объяснить продольной (обратной) диффузией в пористом слое мембраны. [c.181]

    Влияние продольной диффузии (молекулярной или кнудсеновской, в зависимости от размера пор) в порах подложки тем больше, чем больше проницаемость компонентов через селективный слой мембраны и коэффициент деления потока 0. При этом увеличивается (или уменьшается, в зависимости от организации потоков) разность между концентрациями распределяемого компонента на границе селективного и пористого слоев мембраны у и содержанием этого компонента внутри полого волокна Уа. При противотоке концентрация у на границе селек- [c.181]

    Коэффициент сопротивления I рассчитывают по эмпирическим уравнениям [31. Для противотока [c.18]

Рис. УП-14. Типичные опытные данные для вычисления коэффициентов обмена но уравнению ( 11.13) применительно к модели противотока с перемешиванием Рис. УП-14. Типичные опытные данные для <a href="/info/364946">вычисления коэффициентов</a> обмена но уравнению ( 11.13) применительно к модели противотока с перемешиванием
    Основные черты обеих моделей весьма схожи. Например, в них может учитываться обратное перемешивание, обе они требуют экспериментального определения параметров модели (упомянутые выше опыты Де Грота Однако в моделях имеются и некоторые различия. Затруднения при использовании диффузионной модели для непрерывной фазы заключаются в том, что перспективы теоретического расчета величины Едр весьма ограничены. Значения Еор, принимаемые для расчетов, намного больше коэффициентов диффузии, вычисленных для неподвижных слоев. Очевидно, найденные экспериментально или принятые высокие значения др обусловлены прохождением пузырей, как это четко отражено в модели противотока с обратным перемешиванием. Таким образом, можно утверждать, что модель противотока с обратным перемешиванием значительно лучше (кстати, и проще) описывает процесс, чем диффузионная прямоточная модель для непрерывной фазы. [c.274]

    Модель противотока с обратным перемешиванием предполагает иное объяснение коэффициента Ев] по этой модели продольная диффузия является результатом обмена газом между потоками, движущимися вниз вместе с твердыми частицами в непрерывной фазе и поднимающимися вверх с пузырями. [c.301]

    Положительной чертой аппаратов этого типа является их высокая производительность, что особенно существенно в случае противотока, и простота. Недостатки подобных аппаратов — низкое значение объемных коэффициентов межфазного обмена и сильное продольное перемешивание, особенно в системе жидкость—газ. [c.245]

    Рассмотрим одностороннее обтекание поверхности теплообмена при Яст = 0 и отсутствии местных сопротивлений и ускорения потоков. В этом случае для сравнения схем движения можно использовать (2.35). Входящие в это уравнение коэффициенты Ггj и являются функцией формы поверхности теплообмена. В дальнейшем будем рассматривать простейший вид этой поверхности — трубный пучок. В качестве заданной примем схему с поперечным обтеканием. Результаты решения (2.35) с использованием нормативов [34, 35] для расчета коэффициентов С и представлены на рис. 5.4 в виде зависимости Ке1 Р от минимального относительного шага а и степени приближения перекрестного тока к противотоку е. График показывает, что Ке1 Р существует при всех рассмотренных значениях 1,5 3. С увеличением о значение Ке1 Р [c.82]


    При экстракции двумя растворителями исходная смесь, содержащая компоненты А и О, вводится примерно в среднюю часть колонны, в которой противотоком движутся два растворителя С (легкий) и В (тя келый). Распределение компонентов А и О между растворителями С и В зависит от селективной растворимости комионентов. Если коэффициент активности компонента А в растворителе В меньше, чем в растворителе С, то растворитель В будет иметь большое сродство к [c.83]

    О,, в уравнении (IV, 413) является функцией скорости потока и характеризует степень сглаживания фронта гидродинамического возмущения по мере его прохождения через насадочный слой. Сглаживание фронта возмущения может быть вызвано, например, неравномерностью движения отдельных его струй, образованием и слиянием капель на поверхности элементов насадки, противотоком второй фазы и т. п. Коэффициент О/, в модели (IV, 409) характеризует только проточную часть системы. Застойная ее часть в виде статической удерживающей способности не влияет на О.. Таким образом, коэффициенты [c.399]

    Для теплообменников, в которых направление потоков является более сложным, чем прямоток или противоток (смешанное направление потоков), среднелогарифмический температурный напор должен быть скорректирован с помощью коэффициента ед/, численное значение которого зависит от схемы движения потоков и вспомогательных величин Р ж Н. [c.159]

    Среднюю плотность теплового потока для рассматриваемого случая можно выразить как для чистого противотока, умноженную на поправочный коэффициент [c.21]

    Здесь W — водяной эквивалент теплоносителя г]з — коэффициент, учитывающий отклонение схемы движения теплоносителей от идеальной противоточной (при противотоке = 1). [c.323]

    Для того чтобы оценить торможение капель противотоком газа и упростить расчет рассматриваются затвердевшие тела — шарики. Расчет коэффициента сопротивления (С) проводят через числа Рейнольдса по нижеприведенному уравнению  [c.180]

    Д ср. прот — средняя разность температур, вычисленная как для противотока [формула (VII-15)] е — коэффициент, зависящий от схемы движения теплоносителей и от вспомогательных величин R и Р, равных  [c.545]

    Многоходовое течение в теплообменниках типа Е с последовательным включением отсеков и с двумя или любым четным числом ходов внутри труб. Если интервал температур очень велик, например если (7 2)о>(7 1)о. то однокорпусный вариант с 2N ходами труб окажется неприемлемым (Р>Ртах. рис. 4—8.). В этих случаях (если противоток исключен по каким-либо иным соображениям) часто прибегают к вариантам, в которых отдельные корпуса или отсеки теплообменника включаются последовательно по обоим теплоносителям. Если используются М идентичных аппаратов типа ТЕМА Е, включенных последовательно, то поправочный коэффициент Р (или ЫТи может быть рассчитан с помощью уравнения (6), если согласно [45] выразить параметр Р в виде [c.46]

    Аппарат соответствует требованиям ГОСТ 14246—69, в конструкции его предусмотрено четное число ходов по трубпому пространству. В таком аппарате имеет место перекрестное направление потоков, п для увеличения поправочного коэффициента, который вводят в расчеты при отсутствии строгого противотока, аппараты рекомендуется сдваивать, так как при многократном ходе потока поправочный коэффициент приближается к единице. [c.90]

    Рассмотрим наиболее распространенный тин жидкогазофазного каталитического реактора, представляющего собой колонну с неподвижным гранулированным катализатором в виде насадки, утопленной в слое жидкости. Такие реакторы большей частью работают в режиме прямотока сплошной и дисперсной фаз, хотя иногда применяется п противоток. Сложность расчета такого рода реакторов прежде всего заключается в недостаточной изученности методов определения физических коэффициентов, входящих в систему уравненпй [c.188]

    Дальнейшие упрош,ения и возможность применения аналитического метода расчета [77] появляются в случае постоянного коэффициента экстракции е. Подробное описание свойств, которыми должна обладать система при e= oпst, дано на стр. 117. Они остаются в силе без изменений и для противотока. Эти свойства следующие полная взаимная нерастворимость рафината и растворителя или же низкая концентрация экстрагируемого вещества В, постоянство коэффициента распределения т одновременно с наличием одного из первых двух свойств. [c.140]

    В ГрозНИИ разработан процесс, совмещающий обезмасливание парафинового дистиллята с фракционной кристаллизацией парафина, предусматривающий полный противоток растворителя по отношению к сырью и позволяющий получать широкий ассортимент парафинов с температурой плавления от 45 до 68 °С [75, 76]. Этот процесс включает три ступени фильтрования, предназначенные для получения глубокообезмасленного парафина с температурой плавления 52—54 °С, который затем подвергают фракционной кристаллизации на четвертой и пятой ступенях фильтрования. Такой процесс позволяет получить высокоплавкий парафин с температурой плавления до 58°С и низкоплавкий — с температурой плавления 50—52 °С. Одним из условий эффективности этого процесса является ограниченное содержание масла в растворителе. Достоинством его является не только гибкость, но и повышенное содержание нормальных парафиновых углеводородов как в высокоплавком (95,8% масс.), так и в низкоплавком (92,1% масс.) парафинах. Это объясняется раздельной кристаллизацией твердых углеводородов, при которой изопарафины с длинными прямыми участками цепи и нафтены с длинными боковыми цепями кристаллизуются в последнюю очередь. Разработке процесса обезмас-ливания с последующей фракционной кристаллизацией парафина предшествовали теоретические исследования [7, 64], в результате которых предложены уравнения, позволяющие с учетом требуемой глубины обезмасливаиия парафина и содержания масла в исходном сырье определять среднюю концентрацию масла в жидкой фазе и затем оценить коэффициент концентрирования на каждой стадии вакуумного фильтрования (образование осадка, его холодная промывка и подсушка), а следовательно, и общий концентрирующий эффект вакуумного фильтра. [c.160]

    Уравнение (7.24) можно рассматривать как математическую модель неустановившегося потока дисперсной фазы в слое насадки. Параметр I), модели характеризует степень сглаживания фронта гидродинамического возмущения по мере его движения через на-садочный слой. Сглаживание фронта возмущения может быть вызвано различными причинами, например неравномерностью движения отдельных его струй, явлением образования и слияния капель на поверхности элементов насадки, наличием противотока второй фазы и т. п. Важно подчеркнуть, что коэффициент в модели (7.24) характеризует только проточную часть системы. Застойная ее часть в виде статической удерживающей способ-Н0СТ1Г не оказывает заметного влияния на величину /),. Таким образом, есть основания полагать, что коэффициент в модели (7.24) тз. В в модели (7.2) представляют собой одну и ту же физическую характеристику потока. [c.353]

    ГТолставив в уравнение (.5) значение 1, и из П) и (4), получим выражение для определения коэффициента корректировки средней температуры теплоносителей для случая противотока  [c.244]

    Парциальное давление аммиака в смеси газов на входе в колонну равно 0,05 ат, на выходе 0,01 ат. Концентрация серной кислоты в абсорбенте на входе 0,6 кмолъ м , на выходе 0,5 кмоль/.ч . Частные коэффициенты массопередачи / = 0,35 кмолъ .ч Ч-ат), = 0,005 м ч Я = 75 кмолъ/(м ат) расход смеси газов 45 к.чоль/ч общее давление 1 ат. Газ н жидкость движутся противотоком. [c.150]

    ДГ лГ /оДГд, где — мощность тенлообме1П1Ика, Вт — коэффициент теплопередачи, Вт/(м К) (также рассчитанный по наружному диаметру труб) АТ— среднелогарифмическая разность температур, вычисленная для противотока. К р — коэффициент, учитываюнднй направления потоков, Каждьн из этих параметров будет ниже рассмотрен более подробно. [c.12]

    Поправочный коэффициент Е, необходимый для учета конкретной схемы течения теплоносителей вида организации потока, определен также в разд. 1.5, т. 1. Для чистого противотока и при наличии конденсации в одном из теплоносителей f=--l. Во всех других случаях / <1. Но при выборе конструкции теплообменника следует стремиться к тому, чтобы значенне Г было больше 0,75—0,8, так как в противном случае теплообменный аппарат может оказаться недостаточно эффективным. Если значения Р получаются слишком низкими, для обеспечения оптимальных характеристик в зависимости от конкретной ситуации необходимо либо увеличить число секций при последовательном соединении, либо изменить тин иучка труб, либо перейти на чистый противоток. [c.39]


Смотреть страницы где упоминается термин Коэффициент противотоке: [c.381]    [c.126]    [c.234]    [c.156]    [c.559]    [c.155]    [c.297]    [c.12]    [c.215]    [c.659]    [c.241]    [c.50]    [c.92]    [c.93]    [c.94]    [c.117]    [c.44]    [c.179]    [c.144]   
Абсорбция газов (1966) -- [ c.207 ]




ПОИСК





Смотрите так же термины и статьи:

Коэффициент формы противотока

Противоток

Противоток в абсорберах и коэффициенты



© 2025 chem21.info Реклама на сайте