Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кристаллизация твердых углеводородов

    Установка предназначена для получения нефтяных масел с низкой температурой застывания, но в этом процессе кристаллизация твердых углеводородов проходит не в регенеративных кристаллиза- [c.85]

    Таким образом, смолы с повышением концентрации их в растворе, с одной стороны, замедляют рост кристаллов, а с другой,— способствуют деформации поверхности кристаллов и возникновению на них новых центров кристаллизации, причем степень проявления той или другой тенденции зависит от природы смол и обусловливает форму и размер кристаллов. При кристаллизации твердых углеводородов в присутствии смол происходит округление усеченных острых углов ромбических кристаллов, которое увеличивается с увеличением содержания смол в растворе (рис. 42). Смолы, не растворимые в феноле, добавленные после кристаллизации парафинов, остаются в растворе и не влияют на форму и размер кристаллов. Смолы, растворимые в феноле и добавленные после кристаллизации парафина, способствуют агломерации предварительно выделившихся кристаллов. [c.135]


    Одним из основных факторов процесса кристаллизации твердых углеводородов при производстве масел, парафинов и церезинов является скорость охлаждения раствора сырья. Экспериментальные исследования процесса депарафинизации масляных рафинатов и математический анализ стадии фильтрования [10] по- [c.147]

    Седиментометрические и реологические исследования, а также поляризационная микроскопия позволили объяснить действие ультразвука на процесс кристаллизации твердых углеводородов при депарафинизации и обезмасливании. При обработке суспензий твердых углеводородов ультразвуком разрушаются связи между кристаллами твердых углеводородов, что приводит к разрушению образованной ими пространственной структуры при дальнейшем охлаждении эта структура не восстанавливается. Сами же кристаллы парафина при обработке ультразвуком почти не разрушаются. В результате резко снижается структурная вязкость системы и исчезает динамическое предельное напряжение при сдвиге. Все это создает условия для роста кристаллов с образованием агрегатов, обусловливающих высокие скорость и четкость отделения твердой фазы от жидкой, что приводит к увеличению скорости фильтрования, выхода депарафинированного масла и снижению содержания масла в твердой фазе. Однако применение метода ультразвуковой обработки суспензий твердых углеводородов при депарафинизации и обезмасливании пока не вышло из стадии лабораторных исследований. [c.163]

    Эффективность депрессорных присадок при кристаллизации твердых углеводородов связывают с их полярностью, снижением сольватации молекул парафина молекулами масла, нарушением агрегативной устойчивости дисперсии парафина и повышением при этом компактности кристаллических агрегатов, образованием ассоциированных комплексов молекул присадки и твердых углеводородов, что приводит к увеличению скорости фильтрования в процессе депарафинизации масляного сырья. Изучение влияния депрессорных присадок на поведение суспензий твердых углеводородов в сопоставлении с электрокинетическими исследованиями позволяет сделать вывод о возможной электростатической природе их действия. В работе [104], проведенной в этом направлении, в качестве критерия эффективности маслорастворимых присадок, используемых для интенсификации процесса депарафинизации, предложено значение энергетического барьера, создаваемого присадками на поверхности частиц дисперсной фазы в их суспензиях. Энергетический барьер учитывает кроме электрокинетического потенциала частиц дисперсной фазы и их размеры. В работе показана возможность применения маслорастворимых присадок для создания электрического заряда у частиц твердых углеводородов, обеспечивающего образование устойчивых коллоидных систем. Электрокинетические исследования реальных систем твердых углеводородов показали, что присадки, обладающие только депрессор-ным действием, эффективны в дистиллятном сырье. Для остаточного сырья следует использовать металлсодержащие многофункциональные присадки. Однако многокомпонентность масляных рафинатов, сложность состава твердых углеводородов и присутствие двух ПАВ при осуществлении процесса депарафинизации нефтяного сырья в присутствии присадок сильно усложняют изучение механизма кристаллизации твердых углеводородов, что, в свою очередь, затрудняет направленный поиск наиболее эффективных присадок для интенсификации этого процесса. [c.171]


    При охлаждении ниже температуры кристаллизации твердые углеводороды кристаллизуются и выделяются из растворов в виде твердой фазы, которая отделяется от жидкой путем фильтрова- ния. [c.223]

    Кристаллизация твердых углеводородов нефти (технических парафинов). Большая часть твердых углеводородов нефти относится к изоморфным веществам, способным кристаллизоваться вместе, образуя смешанные кристаллы. Очевидно, что одним нз условий появления смешанных кристаллов является наличие длинных алкановых цепей (в основном нормального строения) в н- и изоалканах, нафтеновых и ароматических углеводородах, составляющих твердую фазу, которая выделяется при охлаждении нефтяных фракций. Кристаллы образуются в результате последовательного выделения из раствора и отложения на кристаллической решетке молекул твердых углеводородов с постепенно понижающимися температурами плавления. [c.87]

    Основное количество твердых парафинов, церезины и защитные воски выделяют и обезмасливают путем разбавления исходного сырья растворителями, охлаждения полученного раствора с целью кристаллизации твердых углеводородов и последующего разделения образующейся суспензии. В значительно меньших масштабах производят твердые парафины кристаллизацией без растворителей— фильтрпрессованием охлажденного сырья с последующим потением полученного при этом гача. [c.109]

    ДРОБНАЯ КРИСТАЛЛИЗАЦИЯ ТВЕРДЫХ УГЛЕВОДОРОДОВ [c.208]

Рис. 78. Схема прпбора для дробной кристаллизации твердых углеводородов. Рис. 78. Схема прпбора для <a href="/info/1473462">дробной кристаллизации твердых</a> углеводородов.
    В процессах депарафинизации, осуществляемых путем охлаждения и кристаллизации- твердых углеводородов из растворов масляных фракций в избирательных растворителях/основное значение имеет растворимость масляной [c.9]

    Все сказанное позволяет нарисовать примерную картину процесса кристаллизации твердых углеводородов, содержащихся в маслах. [c.96]

    Поэтому необходимо искать другие объяснения взаимодействия активных органических веществ с парафинами. Несоответствие наблюдений Л. Г. Гурвича и других с высказанными только что положениями является, по-видимому, следствием того, что авторы, исследовавшие кристаллизацию твердых углеводородов в присутствии смол, оперировали с нефтями и мазутами, т. е. смесью, содержащей различные смолы и твердые углеводороды. [c.102]

    Кристаллизация твердых углеводородов и рост кристаллов зависят, как известно, от различных причин, к которым относятся а) характер твердых углеводородов, б) вязкость раствора масла в растворителе, в) температура предварительной термической обработки, г) скорость охлаждения. [c.209]

    Кристаллизация твердых углеводородов начинается с выделения из пересыщенного раствора зародышей кристаллов. При дальнейшем охлаждении раствора кристаллизация протекает на уже образовавшихся центрах кристаллизации (рис. 50). Для получения в процессе кристаллизации крупных кристаллов необходимо, чтобы число зародышей, образующихся в начальной стадии охлаждения, было невелико, так как дальнейшая кристаллизация прс исходит на этих центрах. При большом числе зародышей образуется мелкокристаллическая структура. [c.158]

    Вследствие малой вязкости раствора сырья в сжиженном проьане скорость охлаждения при пропановой депарафинизации значительно выше, чем при использовании кетоновых растворителей. В процессе охлаждения, особенно остаточного сырья, совместная кристаллизация твердых углеводородов и оставшихся в рафи — нате смолистых веществ приводит к образованию крупных (дендритных) кристаллов, что обеспечивает повышенную скорость их фильтрования. Вследствие высокой растворяющей способности пропарга кратность его к сырью небольшая и составляет от 0,8 1 до 2 1 (об.). [c.267]

    Вследствие большой важности данного вопроса, а также наличия в нем некоторых отдельных издавна укоренившихся неверных представлений, приводящих к ошибочным прикладным выводам, необходимо дать здесь более подробное рассмотрение явлений, связанных с кристаллизацией твердых углеводородов нефти, и попутно отметить и разобрать существуюпще в данной области основные и наиболее существенные неточности. [c.59]

    Для смазочных масел появление предела прочности за счет образования сверхмицеллярных структур при кристаллизации твердых углеводородов почти всегда вредно (в лучшем случае бесполезно). Застывшее, затвердевшее масло перестает подтекать к зоне трения, что вызывает масляное голодание. Масло не поступает к всасывающему патрубку насоса, что приводит к нарушению нормальной циркуляции масла в системе смазки механизма. В результате возможен опять-таки недостаток смазочного материала у трущихся поверхностей и ухудшение теплоотвода. Появление измеримого предела прочности исключает слив масла из тары. [c.275]


    Н. И. Черножукова [24—26]. Эти исследования позволили установить, что углеводороды всех гомологических рядов при кристаллизации из растворов в неполярных растворителях, в том числе и в нефтяных фракциях, образуют кристаллы орторомбической формы, причем характерна ступенчатая слоистость кристаллов, т. е. каждый новый слой кристаллизуется на предыдущем, образуя пирамиду из параллельных ромбических плоскостей (рис. 35 а в). Кристаллы твердых углеводородов, принадлежащих разным гомологическим рядам, различаются по размерам и степени слоистости. Наибольшие размеры кристаллов и число ромбических плоскостей имеют нормальные парафиновые углеводороды (см. рис. 35, а), нафтеновые и особенно ароматические углеводороды характеризуются меньшей величиной кристаллов и менее слоистым строением (см. рис. 35, б, в). При совместной кристаллизации твердых углеводородов в неполярных, растворителях образуются смешанные кристаллы, которые являются твердой фазой переменного состава, т. е. состав может меняться при сохранении однородности кристаллической структуры, что характерно для соединений, близких по строению молекул. В данном случае возможность образования смешанных кристаллов обусловлена наличием в молекулах твердых углеводородов длинных парафиновых цепей в основном нормального строения. При совместной кристаллизации из неполярнрй среды форма кристаллов остается орторомбической, а их размер зависит от содержания циклических углеводородов в смеси с парафиновыми чем больше циклических углеводородов, тем меньше размер кристаллов и число наслоений. [c.129]

    Особый интерес представляет кристаллизация твердых углеводородов из растворов в полярных растворителях, применяемых в процессах депарафинизации и обезмасливаиия при производстве нефтяных масел, парафинов и церезинов, так как эффективность этих процессов зависит от размеров и формы кристаллов твердых углеводородов, образующихся при охлаждении растворов сырья в [c.129]

    Присутствие жидких малоциклических ароматических углеводородов из-за наличия в их молекулах коротких боковых цепей не влияет на структуру и размер кристаллов парафиновых углеводородов. Повышенное их содержание приводит к увеличению размеров этих кристаллов вследствие уменьшения концентрации последних в растворе, что связано с облегчением условий роста кристаллов. Полициклические ароматические углеводороды в концентрации >25% (масс.) на смесь способствуют уменьшению размеров кристаллов парафинов, что объясняется повышением вязкости раствора, из которого проводится кристаллизация. Процесс кристаллизации твердых углеводородов из полярных и неполярных растворителей протекает в форме монокристаллических образований образуется структура, состоящая из кристаллов определенной формы, причем каждый монокристалл развивается из одного и того же центра. При такой форме кристаллизации отдельные кристаллы могут быть как разобщены между собой, так и образовывать в растворе пространственную кристаллическую решетку. С помощью электронного микроскопа при увеличении в 13 000 раз удалось проследить практически все стадии роста кристаллов от момента возникновения зародышей (центров кристаллизации) до полностью оформленного кристалла [25, 26]. Такое постадийное изучение процесса роста кристаллов проведено на примере пента-контана ( пл = 93°С) при кристаллизации в углеводородной среде (рис. 39, а—г). [c.131]

    На эффективность процессов депарафинизации и обезмаслива-ния существенное влияние оказывают факторы, от, совокупности которых зависит кристаллизация твердых углеводородав, содержа-щнхся в сырье, а следовательно, и основные показатели этих процессов. [c.136]

    Кристаллизация твердых углеводородов при депарафинизации зависит от глубины очистки рафинатов, которая характеризуется степенью извлечения смол и полициклических ароматических углеводородов. Смолы остаточного происхождения в большей степени влияют на кристаллообразование твердых углеводородов, чем дистиллятные, содержащиеся в той же концентрации, причем не наблюдается отличия в воздействии аналогичных по происхождению гр)рп смол, содержащихся в рафинатах из серщ1стых и мало-сернисхых нефтей. Смолы при малой концентрации в растворе тормозят, образование зародышей кристаллов, твердых углеводородов и практически не влияют на рост уже образовавшихся кристаллов правильной орторомбической структуры. В. результате из-за снижения чиела зародышей кристаллов в конейрм итоге получаются более крупные кристаллы, чем в отсутствие емол. [c.138]

    Благодаря низкой растворяющей способности по отношению к твердым углеводородам и высокой растворимости в них масляных углеводородов такие растворители, как метилизобутилкетон и н-метилпропилкетон, могут быть использованы как индивидуальные, а не в смеси с ароматическими углеводородами [39, 48, 49]. Растворяющую способность высших кетонов и их смесей с ацетоном и метилэтилкетоном можно регулировать, изменяя содержание в них воды. При обезмасливании продуктов с целью получения высокоплавких твердых углеводородов используют насыщенный водой метилизобутилкетон, позволяющий проводить обезмасливание при более высокой температуре, причем выход церезина увеличивается на 1—2% [40]. К недостаткам изученных кетонов следует отнести их малую доступность и дороговизну. Кетоны с семью углеродными атомами в молекуле и более высокомолекулярные не используют в процессах депарафинизации и обезмас-ливания, что объясняется их высокой вязкостью при низких температурах, затрудняющей кристаллизацию твердых углеводородов. Кроме того, более высокая температура кипения таких кетонов усложняет их регенерацию. [c.145]

    Еще одним достоинством высокомолекулярных кетонов и их смесей с низкомолекуляриыми кетонами является возможность регулировать растворяющую способность таких смешанных растворителей изменением содержания в них воды. Так, при обезмасливании твердых углеводородов [68, с. 179] используют насыщенный водой метилизобутилкетон, что исключает оборудование для осушки растворителя. На такой установке осуществляется порционная подача растворителя, причем расход его увеличивается от начального разбавления к конечному. Это обеспечивает максимальный рост кристаллов при раздельной кристаллизации твердых углеводородов и, как следствие, хорошую проницаемость осадка на фильтре. Пониженная растворяющая способность обводненного метилизобутилкетона по отношению к твердым угле- [c.157]

    В настоящее время в СССР и за рубежом разработаны и внедрены в производство разные варианты совмещенных схем получения масел, парафинов и церезинов, которые позволяют перерабатывать сырье разного фракционного состава [71—74]. При такой схеме увеличивается выход депарафинированного масла, повышается скорость фильтрования суспензий в результате раздельной кристаллизации твердых углеводородов, появляется возможность одновременно получать парафины с разной температурой плавления. На совмещенной четырехступенчатой установке одна ступень предусмотрена для депарафинизации дистиллятных рафинатов и три ступени для обезмасливаиия гача, причем третья ступень используется при производстве глубокообезмасленных парафинов [7, с. 130]. [c.159]

    В ГрозНИИ разработан процесс, совмещающий обезмасливание парафинового дистиллята с фракционной кристаллизацией парафина, предусматривающий полный противоток растворителя по отношению к сырью и позволяющий получать широкий ассортимент парафинов с температурой плавления от 45 до 68 °С [75, 76]. Этот процесс включает три ступени фильтрования, предназначенные для получения глубокообезмасленного парафина с температурой плавления 52—54 °С, который затем подвергают фракционной кристаллизации на четвертой и пятой ступенях фильтрования. Такой процесс позволяет получить высокоплавкий парафин с температурой плавления до 58°С и низкоплавкий — с температурой плавления 50—52 °С. Одним из условий эффективности этого процесса является ограниченное содержание масла в растворителе. Достоинством его является не только гибкость, но и повышенное содержание нормальных парафиновых углеводородов как в высокоплавком (95,8% масс.), так и в низкоплавком (92,1% масс.) парафинах. Это объясняется раздельной кристаллизацией твердых углеводородов, при которой изопарафины с длинными прямыми участками цепи и нафтены с длинными боковыми цепями кристаллизуются в последнюю очередь. Разработке процесса обезмас-ливания с последующей фракционной кристаллизацией парафина предшествовали теоретические исследования [7, 64], в результате которых предложены уравнения, позволяющие с учетом требуемой глубины обезмасливаиия парафина и содержания масла в исходном сырье определять среднюю концентрацию масла в жидкой фазе и затем оценить коэффициент концентрирования на каждой стадии вакуумного фильтрования (образование осадка, его холодная промывка и подсушка), а следовательно, и общий концентрирующий эффект вакуумного фильтра. [c.160]

    Для интенсификации процессов депарафинизации рафинатов и обезмасливаиия гачей предложено [82, 83] проводить кристаллизацию твердых углеводородов в среде барботирующего инертного газа (азота или углекислого газа). Суть этого метода заключается в образовании подвижных центров кристаллизации — пузырьков инертного газа, на которых сорбирована часть смолистых веществ, содержащихся в сырье. При этом сокращается длительность диффузии молекул твердых углеводородов к центрам [c.163]

    В перечисленных работах присадку подавали в исходное сырье. единовременно перед его термообработкой. Есть сведения о выделении нефтяных парафинов в присутствии одновременно двух так называемых селективных ускорителей процесса кристаллизации твердых углеводородов [95], которые вводят в исходное сырье ступенчато. В раствор подается в оптимальном количестве первый ускоритель (модификатор), действующий на высокоплавкие твердые углеводороды, причем смесь охлаждается до определенной температуры, а затем —второй ускоритель депарафинизации с целью осаждения низкоплавких углеводородов, причем температура суспензии одновременно снижается до конечной. Фильтрование осуществляется либо после каждой ступени подачи ускорителя, либо один раз, при температуре конечного охлаждения. Первым ускорителем являются продукты конденсации нафталина и хлорированного парафина с температурой плавления до хлорирования 68—85 °С, молекулярной массы 400—700 полиалкилметак- [c.168]

    Серия опытов [105] по депарафинизации остаточных рафинатов с разным содержанием смол (от 1,3 до 4,2% масс.) в растворе МЭК —толуол в присутствии присадок [93] показала, что эффективность последних зависит от количества и структуры смол. Исходя из того, что наличие двух ПАВ (смол и присадки) может при кристаллизации твердых углеводородов в процессе депарафинизации дать как синергический, так и антагонистический эффект, вляние этих ПАВ на процесс депарафинизации исследовали раздельно и совместно. С этой целью рафинат обессмоливали, а выделенные из него смолы добавляли в обессмоленный рафинат в широком интервале концентраций. Результаты депарафинизации [c.171]

    Однако потребность в глубокообезмасленных высокоплавких церезинах из года в год растет. В связи с этим исследованию возможности интенсифицировать процесс обезмасливаиия твердых углеводородов, особенно петролатумов, посвящено много работ. Известно, что некоторые примеси и специально введенные присадки могут изменять течение и характер кристаллизации твердых углеводородов при понижении температуры, влияя как на образование центров кристаллизации, так и на последующий рост кристаллов. Использование модификаторов структуры твердых углеводородов для интенсификаций обезмасливаиия представляет большой интерес. В этом случае без особых капитальных затрат можно значительно увеличить скорость фильтрования суспензии твердых углеводородов и, как следствие этого, увеличить производительность установки при одновременном повышении качества получаемых церезинов. Эффективность модификаторов структуры твердых углеводородов при обезмасливании зависит от их правильного выбора, который определяется природой и механизмом действия модификатора, составом и содержанием твердых углеводородов в сырье, а также структурой и содержанием в нем смолистых веществ. [c.176]

    Выяснение механизма действия присадок в процессе обезмас-ливания имеет большое значение для направленного поиска наиболее эффективных продуктов. В основу изучения механизма действия ПАВ в процессе кристаллизации твердых углеводородов может быть положено распределение присадки между твердой и жидкой фазами при депарафинизации и обезмасливании масляного сырья. Как указывалось выше, при депарафинизации в присутствии присадки последняя выделяется с твердой фазой. Однако этот вывод нельзя автоматически перенести на процесс обезмас-ливания, учитывая разную концентрацию твердых углеводородов и состав жидкой фазы в сырье этих двух процессов. Использование в качестве критерия распределения присадки между продуктами обезмасливаиия петролатума рекомендованных ранее значений поверхностного натяжения и удельного объемного сопротивления модельных и реальных систем [106] показало, что с увеличением содержания присадки в модельных системах удельное объемное сопротивление церезина и фильтрата от обезмасливаиия монотонно снижается (рис. 65). [c.178]

    Такая ориентация ПАВ обусловлена как ван-дер-ваальсовыми силами притяжения между углеводородными цепями, так и сила ми взаимного отталкивания их полярных групп при высоких концентрациях присадки в системе. Пока мицеллы имеют небольшие размеры, они преимущественно концентрируются в фильтрате обезмасливаиия. При этом церезин обедняется присадкой, что ведет к возрастанию его р и а. Для фильтрата аналогичные показатели снижаются, особенно р , что говорит о высокой концентрации присадки в этом продукте. В этой области скорость фильтрования суспензий петролатумов снижается до уровня скорости фильтрования без присадки. При введении более 0,1% (масс.) присадки наряду со сферическими мицеллами образуются более крупные пластинчатые мицеллы ПАВ, и присадка обнаруживается как в твердой, так и в жидкой фазе. Возможно также взаимодействие части мицелл между собой с образованием крупных агрегатов, благодаря чему скорость фильтрования увеличивается, но уже не достигает максимума. Аналогичные результаты получены при использовании присадок АзНИИ и ПМА Д в качестве модификаторов структуры кристаллов твердых углеводородов. Следовательно, присадки этого типа обладают адсорбционным механизмом действия при кристаллизации твердых углеводородов в процессе обезмасливаиия. [c.181]

    Согласно наиболее распространенной гипотезе, кристаллизация твердых углеводородов из масла, приводящая к его застуднева-Пию, рассматривается как образование в системе парафин — масло пространственной сетки (или каркаса), которая, иммобилизуя жидкую фазу, препятствует ее движению. Сцепление частиц дисперсной фазы происходит по ребрам монокристаллов, где наблюдается разрыв пленок дисперсионной среды образовавшийся гель обладает определенной механической прочностью. Другая гипотеза связывает застудневание с возникновением сольватных оболочек жидкой фазы вокруг кристаллов парафина. Дисперсионная среда, иммобилизированная вокруг дисперсных частиц, значительно увеличивает их объем, что повышает внутреннее трение всей системы и понижает ее текучесть. Предполагают, что при сдвиге, обусловленном механическим воздействием, толщина сольватных оболочек уменьшается и гель может превращаться в золь. При понижении температуры масел развитие процесса ассоциации приводит к образованию мицелл, вызывающих застудневание системы независимо от того, выделяется твердая фаза или нет. Добавление депрессоров значительно снижает как статическое, так и динамическое предельное напряжение сдвига депрессоры задерживают появление аномальной вязкости, сдвигая начало образования структуры в область более низких температур. [c.151]

    Очистка масляных и дизельных фракций от парафинов (депарафинизация) предназначается для того, чтобы понизить температуру застывания очищаемых продуктов. Удаленные при очистке твердые и жидкие алканы являются ценным химическим сырьем. Применяются следующие методы детарафинизации кристаллизация твердых углеводородов при понижении температуры сырья кристаллизация твердых углеводоро/ ов ири охлаждении раствора сырья в избирательных растворителях карбамидная депарафини- [c.326]

    НА ДЕПАРАФИНИЗАЦИЮ МАСЕЛ В настоящее время депарафинизация масел и обезмасли-вание парафинов осуществляется методом кристаллизации твердых углеводородов из раствора МЭК - толуол. [c.17]

    Изложенные выше теоретические исследования в области кристаллизации твердых углеводородов имеют большое значение для регулирования процесса депарафинизации масел в смысле обеспечения надлежащего роста кристаллов, повышения скорости фильтрации и уменьшения содержания масел в гаче. Некоторые положения, основанные на этом материале, изложены ниже в разделе депарафинизации масел. [c.97]

    Эти опыты были повторены Чемберленом, Динвайди и Франклином [36] при исследовании кристаллизации твердых углеводородов из масла в растворе пропана и в присутствии асфальтенов. Кристаллы парафина (и церезина), выделявшиеся при —42° из раствора масла в пропане, в отсутствии асфальтенов нредставляют собой сетчатообразные скопления пластинок, слюдообразные скопления с небольшим количеством осколочных игольчатых и пластинчатых кристаллов. В присутствии асфальтенов при -)-11° были видны темно-коричневые прозрачные резиноподобные кружево- [c.99]

    В. Использование больнюй кратности растворителя по отношению к маслу может вообще затруднить, даже при очень низких температурах, достаточно полную кристаллизацию твердых углеводородов из раствора. Наоборот, нри недостаточной кратности растворителя образуется гелеобразная структура, в которой не наблюдается четкой границы между твердой и жидкой фазами. Так, это наблюдается в растворе сжиженного пропана при соотношении его к маслу, меньшем 1,6 1 аналогичное явление имеет место и при малой кратности других неполярных растворителей к исходному маслу. [c.203]

    Помимо вязкости растворов, на скорость фильтрации суш ествен-ное влияние оказывает фракционный состав денарафинируемого сырья. Это связано с характером образуюш ихся кристаллов в узкой и широкой фракциях дистиллята. Вследствие большей возможности образования эвтектики при кристаллизации твердых углеводородов из широкой фракции скорость фильтрации [c.209]

    Депарафинизация нефтепродуктов может осуществляться несколькими методами кристаллизацией твердых углеводородов при охлаждении сырья кристаллизацией твердых углеводородов при охлаждении раствора сырья в избирательных растворителях комплексообразованием с карбамидом каталитическим превращением твердых углеводородов в низкозастывающие продукты адсорбционным разделением сырья на высоко- и низкозастывающие компоненты биологическим воздействием. Наиболее широкое промышленное применение получили методы депарафинизации с использованием избирательных растворителей реже используют процесс карбамидной депарафинизации, главным образом для понижения температуры застывания дистиллятов дизельных топлив. [c.155]


Смотреть страницы где упоминается термин Кристаллизация твердых углеводородов: [c.220]    [c.70]    [c.122]    [c.139]    [c.146]    [c.166]    [c.170]    [c.182]    [c.336]   
Твердые углеводороды нефти (1986) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте