Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Физическая абсорбция поверхность контакта фаз

    Пз изложенного видно, что в настоящее время нельзя еще рекомендовать общего надежного метода расчета абсорберов для хемосорбционных процессов на основе лабораторных данных. Такой расчет применим лишь в тех случаях, когда можно предполагать, что активная поверхность контакта при физической абсорбции и хемосорбции одинакова или если активная поверхность известна для обоих этих процессов. Мы полагаем, что для развития моделирования хемосорбции требуется прежде всего углубление познаний о величине активной поверхности контакта. [c.177]


    Основные цели, преследуемые дальнейшим обсуждением, заключаются в анализе механизма хемосорбции, в рассмотрении влияния химических и физических свойств систем на скорость абсорбции и в расчете этой скорости для различных условий. Ниже будет также показано, как результаты измерения скорости абсорбции могут быть использованы для определения таких физико-химических параметров, как константы скорости реакции и коэффициенты диффузии, а также для нахождения коэффициентов массопередачи и поверхности контакта фаз. [c.16]

    IX-1-5. Значения эффективной поверхности контакта фаз. При орошении насадочной колонны жидкостью толщина и скорость жидкостного слоя изменяются от точки к точке по поверхности насадки. В случае физической абсорбции газа жидкостью на тех участках, где движение жидкости замедлено или ее слой очень тонок, может происходить практическое насыщение абсорбируемым газом, вследствие чего вклад этих участков в общую скорость абсорбции невелик. С другой стороны, если рассматривать не абсорбцию, а испарение орошающей жидкости в поток газа, то следует ожидать, что эффективный вклад различных участков поверхности, покрытой жидкостью, в суммарную скорость испарения будет практически одинаковым. Значит, поверхность контакта жидкости и газа, эффективная для испарения ( смоченная поверхность ), больше поверхности, эффективной для физической абсорбции газа. [c.215]

    Все эти рассуждения показывают, что при физической абсорбции газа эффективная поверхность контакта фаз меньше смоченной поверхности насадки. С другой стороны, при абсорбции, сопровождаемой химической реакцией, эффективной обычно является вся смоченная поверхность, потому что скорость абсорбции в присутствии химически взаимодействующего реагента увеличивается в меньшей степени, чем возрастает емкость раствора по абсорбируемому газу, и [c.218]

    При расчете требуемой поверхности контакта фаз в условиях хемосорбции ускорение процесса можно учесть увеличением коэффициента массоотдачи р, если считать движу-П1,ую силу процесса такой же, как при физической абсорбции. Тогда коэффициент массоотдачи в жидкой фазе при протекании химической реакции [c.441]

    Механическое перемешивание в системах жидкость—газ обычно осуществляется при проведении процессов, скорость которых лимитирована массообменом в сплошной фазе, т, е. при абсорбции труднорастворимых газов. В этом случае основное сопротивление массопередаче оказывается в сплошной фазе. При чисто физической абсорбции мешалки обычно не используются. Чаще их применяют для систем, в которых абсорбция сопровождается химической реакцией. Вероятно, это обусловлено малой растворимостью газа в жидкости, а при химической реакции растворимость газа возрастает в несколько раз. Типичные случаи перемешивания систем жидкость—газ — это процессы гидрирования, хлорирования, ферментации, биологической очистки воды и т. п. Необходимо отметить, что для многих химических реакций с малыми скоростями требуется длительное время контакта (пребывания), что легко может быть осуществлено в аппарате с мешалкой. Перемешивание дает возможность создания большой межфазной поверхности. Это вызывает значительное повышение коэффициентов массопередачи, рассчитанных на единицу объема, и, кроме того, незначительный рост этих коэффициентов, отнесенных к единице межфазной поверхности. [c.328]


    Диффузионная область, где скорость реакции настолько велика, что зона ее становится бесконечно малой и совпадает с поверхностью контакта фаз. При этом сопротивление массопере-даче полностью сосредоточено в газово фазе и скорость процесса рассчитывается как скорость физической абсорбции легкорастворимого газа с нулевой равновесной концентрацией поглощаемого комнонента в жидкости. [c.62]

    Абсорбция и адсорбция газов зависят от переноса молекул газа из общей массы к поверхности жидкости или твердого тела. В случае жидкости молекулы газа в дальнейшем диффундируют во всем объеме жидкости, тогда как на поверхности твердого тела они удерживаются физическими (Ван-дер-Ваальса) или химическими (хемосорбция) силами. Когда поверхность жидкости или твердого тела вступает в контакт с покоящимся газом, диффузия молекул газа протекает по законам молекулярной диффузии, и скорость ее зависит от температуры и давления газа и типа газовых молекул. Скорость переноса молекул Na в мольных единицах на единицу площади за единицу времени описывается законом Фика  [c.103]

    Принципиально непрерывный процесс физической абсорбции может быть организован по рассмотренной вьипе ступенчатой противоточной схеме. Однако в том случае, когда для разделения необходимо значительное количество теоретических ступеней, такая схема становится громоздкой. Кроме того, до сих пор говорилось лишь о равновесных состояниях, которые устанавливаются при весьма продолжительном соприкосновении фаз. Как отмечалось в подразделе 1.4.1, установление равновесия в системе газ—жидкость заключается в выравнивании локальных концентраций в объеме фаз. Перенос массы в пределах каждой фазы (массоперенос) осуществляется в основном за счет процессов конвективной диффузии. Скорость массообмена между фазами определяется разностью концентраций текущей средней концентрации в объеме фазы и концентрации компонента, зависящей от концентрации в другой фазе, которая будет иметь место после установления равновесия. Эта разность концентраций называется движущей силой абсорбции. Скорость массообмена зависит также от поверхности соприкосновения фаз и скорости конвективной диффузии, которая в свою очередь определяется физико-химическими свойствами участвующих в процессе веществ, скоростями движения фаз и видом массообмешюго устройства. Скорость массообмена существенно падает при приближении к равновесию, поэтому рассмотренная выше схема ступенчатого контакта, в которой на каждой ступени достигается состояние, близкое к равновесию, неэффективна при необходимости большого числа теоретических ступеней разделения. [c.41]

    В соответствии с рассмотренным химизмом наиболее медленными стадиями, определяющими скорость процесса, в зависимости от условий хлорирования могут быть либо процесс абсорбции хлора расплавом, либо адсорбции хлора углем или взаимодействие сорбированного хлора с растворенным фосфатом. На скорость процесса влияют многие факторы поверхность контакта фаз газ расплав и восстановитель расплав, концентрация фосфатов в расплаве и физические свойства расплава. [c.153]

    Однако для расчетных целей при отсутствии части или всей требуемой информации может быть использован и другой подход, который часто оказывается менее трудоемким в смысле затраты времени, чем тщательный анализ всех деталей абсорбционного процесса. Коэффициент ускорения Е или удельная скорость абсорбции 7 зависят от состава раствора и газа и от величины Если использовать лабораторную модель абсорбера с известной поверхностью контакта фаз, в которой значение коэффициента физической массоотдачи таково же, что и в проект Груемой колонне, то можно определить значения Е или / , соответствующие составам жидкости и газа в различных точках проектируемого аппарата, и подставить их затем в уравнение (VIII,33) или (VIII,32). Использование лабораторных моделей для этой цели обсуждается в главе VII. [c.192]

    Уравнение (6.268) не вскрывает сложный механизм переноса вещества, а лишь отражает соотношение между потоком вещества, поверхностью контакта фаз Р и движущей силой процесса ДС, В данном случае механизм переноса заложен, в вели шне 3, назьшаемой коэффициентом массоотдачи. Исходя из различных моделей массопередачи (пленочной, проннцания, обновления поверхности) получены выражения для коэффициента массоотдачи /3, как функции гидродинамической обстановки и свойств фаз. Следовательно, скорость физической абсорбции зависит не только от 280 [c.280]

    Здесь N — скорость образования компонента Q в единице объема в результате химической реакции, кмоль/(м с) Ф — объем газовой фазы (м ) на 1 м поверхности контакта Q — концентрация компонента ( в газовой фазе Q — значение Q в равновесии с жидкой фазой С — расход газа, причем коэффициент массопередачи Кг определяется как для физической абсорбции, а кинетическое уравнение реакции в общем виде будет  [c.127]


    Для использования этого метода должны быть известны удельная поверхность контакта фаз а в образце, а также коэффициент массоотдачи при физической абсорбции р (который может быть найден из опытов со стандартными системами) при тех гидродинамических режимах, которые намечено использовать для промышленного процесса. Далее на модели проводят опыты по физической абсорбции, изменяя гидродинамические условия так, чтобы получить значение Рж, найденное на образце. После этого на модели при тех же условиях выполняются опыты по хемосорбции, из которых находится величина х, принимаемая и для образца. [c.160]

    Pasiuk-BronikowskaW., hem. Eng. Sei., 24, 1139 (1969). Определение коэффициента физической массоотдачи в жидкой фазе и эффективной поверхности контакта фаз при абсорбции в колонне с ситчатой тарелкой химическим методом. [c.287]

    Влияние химической реакции в жидкой фазе на коэффициент массопередачи в насадочной колонне описывают Данквертс и Кеннеди. Они проверяют применимость теории проницания (либо в виде предположения Хигби о времени контакта жидкости, либо в виде допущения Данквертса об обновлении поверхности). Авторы измеряли скорость абсорбции СОг раствором NaOH в насадочной колонне диаметром 100 Мм. с фарфоровыми кольцами Рашиг 1 12X12 мм. Определялись также коэффициенты массоотдачи без реакции k a в нереагирующем растворе, физические свойства которого бЫли аналогичны свойствам раствора NaOH. [c.423]

    Хофтицер и Ван Кревелен [1651 предполагают, что при физической абсорбции и хемосорбции активная поверхность контакта разная, причем она достигает максимального значения в области, в которой коэффициент массоотдачи не зависит от гидродинамических условий (стр. 133). Для нахождения удельной поверхности контакта при физической абсорбции (аф з.) и при хемосорбции в указанной области (ах м.) на модельном аппарате проводят опыты с конкретной системой при различных гидродинамических условиях. Из опытов определяется объемная скорость абсорбции Na. Далее по соответствующим формулам рассчитывают значение р, отнесенное к геометрической удельной поверхности а , и вычисляют величины у. =НафжаоАр а (при реакции псевдо- [c.175]

    Для проведения таких ХТП часто используют типовые аппараты, применяемые также и для осуществления физических массообменных процессов абсорбции, десорбции, ректификации, теплообмена и др. К таким аппаратам относят различные типы колонных аппаратов пленочные, барботажные, разбрызгивающие, пепные. В основном это реакторы непрерывного действия, хотя некоторые конструкции (например, барботажные, пенные) могут использоваться в режиме иолупериодического действия с пепрерывпы.м питанием по газовой фазе. Все они выполнены в виде колонн, внутреннее устройство которых предназначено для развития поверхности контакта фаз и ее обновления в процессе взаимодействия реагентов. [c.125]

    Этим уравнением можно воспользоваться, если известны коэффициент массоотдачи при физической абсорбции Рж, удельная поверхность контакта фаз а, движущая сила процесса Ар — Аж и безразмерный коэффициент ускорения у. равный выражению в фигурных скобках), В уравнении (11,80) М = ВжЫАр, А = Ар Аж-, %= К1 — К2) х и>ж = ( 1 — К ) Вж — концентра- [c.63]

    На более полное использование жидкости в застойных зонах при абсорбции, сопровождающейся химической реакцией, по сравнению с физической абсорбци ей указывает Данквертс . При быстром связывании абсорбируемого газа его концентрационный градиент в жидкости, рассчитанный по теории проницания, оказывается отрицательным. Следовательно, время контакта, предшествующее обновлению поверхности, влияет на скорость абсорбции с химической реакцией не в той же степени, как в случае физической абсорбции (рис. 1-74). Поэтому, если абсорбция сопровождается реак- [c.53]

    В принципе площадь поверхности контакта газа и жидкости можно найти, если измерить скорость абсорбции газа в жидкости, с которой газ вступает в быструю химическую реакцию. Обычно для таких целей применяется абсорбция кислорода водным раствором Na2SOз, содержащим в качестве катализатора ионы меди или кобальта. Если взаимодействие протекает быстро, то скорость абсорбции не зависит от тех факторов, которые оказывают влияние (см. главу 8) на значения к , полученные при одной физической абсорбции. Скорость процесса определяется скоростью гомогенной химической реакции и коэффициентом диффузии. Скорость абсорбции пропорциональна межфазной поверхности (см. раздел 8.15). [c.658]

    Расхо кденне экспериментальных и рассчитанных значений к , для си-стелгы SOg—H2SO4 объясняется, вероятно, большей величиной межфазовой поверхности для этой системы по сравнению с системой NHg—HjO. Причиной этого является, во-первых, несколько меньшее газосодержание пенного слоя цля системы NHg—HjO (при скорости газа 1.4 м/сек.). Другую причину меньшей межфазовой поверхности при водной абсорбции аммиака следует искать в различии физических свойств жидкостей в сопоставляемых системах (вода и серная кислота). Поскольку в литературе нот данных по влиянию физических свойств жидкости (удельный вес поверхностное натяжение а, вязкость ц) на поверхность контакта фаз в пенном режиме, то для оценки этого влияния мы использовали данные, относящиеся к начальным рен<имам барботажа. [c.241]

    Кузьминых [189] предложил определять Рг и Рж путем проведения опытов по одновременным испарению воды и десорбции Ог в данном случае наиболее просто обеспечиваются одинаковые гидродинамические условия, а следовательно, и поверхность контакта. Это предложение получило дальнейшее развитие в ряде работ [194, 132, 133], в частности, при нахождении коэффициента ускорения х с одновременным определением при хемосорбции и Рж при физической абсорбции. При этом одновременно с проведением хемосорбции (для нахождения ) проводили десорбцию из раствора инертного компонента (например. Не, СзНб, NzO) с определением при нахождении х последняя величина должна быть скорректирована с учетом различия в >ж, как указано выше. Такой прием особенно полезен, если ж значительно меняется при протекании хемосорбции, как, например, при абсорбции СОг растворами этаноламинов. [c.148]


Смотреть страницы где упоминается термин Физическая абсорбция поверхность контакта фаз: [c.11]    [c.63]    [c.163]    [c.17]    [c.76]    [c.163]   
Абсорбция газов (1966) -- [ c.175 ]




ПОИСК





Смотрите так же термины и статьи:

Поверхность абсорбции

Поверхность контакта фаз

Поверхность физическая

Физическая абсорбция



© 2025 chem21.info Реклама на сайте