Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Массообмен в физических процессах

    Система трубчатых турбулентных аппаратов для быстрых химических и массообменных физических процессов [c.336]

    Несмотря на то, что ассортимент вырабатываемой продукции и перечень технологических установок нефтеперерабатывающих и нефтехимических предприятий весьма велики, на этих установках реализуется. относительно небольшое число типовых химических и физических процессов массообменные (ректификация, аб- [c.74]


    В первой и третьей зонах реактора протекают физические процессы подвода и отвода веществ, подчиняющиеся общим законам массопередачи. Закономерности массопередачи определяются законами фазового равновесия, движущей силой процесса и коэффициентами скорости массообменных процессов. Массопередача осуществляется путем молекулярной диффузии, конвекции, испарения, абсорбции и десорбции. [c.95]

    Аналогия существует между электрическими, тепловыми и массообменными процессами, а также между гидродинамическими, тепловыми и массообменными процессами. Поэтому при исследовании тепловых, массообменных или гидродинамических процессов можно использовать более простые и в каком-либо отношении более удобные, чем натура, модели, в которых протекает совсем другой физический процесс. Единственное условие применимости такого способа исследования заключается в том, что оба процесса должны описываться одинаковыми по виду дифференциальными уравнениями. Так, например, электротепловая аналогия может быть применена путем использования описанного выше метода электролитической ванны для исследования полей температур в реакционных аппаратах. [c.75]

    Продукт в камере хранится в штабелях. Физические процессы в камере — тепло- и массообмен между продуктом, воздухом камеры, приборами охлаждения и ограждениями. В качестве приборов охлаждения применены воздухоохладители. [c.231]

    В реальных аппаратах на химическую реакцию влияют сопутствующие физические процессы, обусловленные тепло- и массообменом и гидродинамической обстановкой. Протекание процесса в таких условиях называют макроскопическим или на макроуровне. В связи с этим принято различать микрокинетику и макрокинетику химических процессов. Разумеется, что такое деление является в известной степени условным, но оно позволяет дать количественную оценку разным сторонам сложного химического процесса. [c.57]

    Автор надеется, что книга по своему содержанию будет полезна химикам, интересующимся влиянием физических процессов на протекание химических реакций, инженерам, конструкторам, технологам, специалистам по горению, гидродинамике, тепло-и массообмену и автоматическому регулированию, встречающимся в своей работе с химическими процессами. [c.6]

    Если такие физические процессы, как массо- и теплообмен, протекают без изменения химического строения самого вещества, а меняются только его теплофизические характеристики, то химический процесс сопровождается изменением самого вещества, образованием новых веществ. Элементарные акты химического превращения остаются неизменными, рассматриваются ли они на микро- или макроуровне, меняется только гидродинамическая, а соответственно массо- и теплообменная обстановка при переходе от лабораторной установки к промышленному реактору. С помощью критериев подобия можно находить необходимые тепло- и массообменные параметры, рассчитанные для определенных моделей со строго опреде- [c.81]


    При наличии в блоке нескольких тепло-массообменных и диффузионных процессов каждый из них учитывается отдельно при определении общего Kz- Индексы всех выше приведенных гидродинамических, тепломассообменных, диффузионных и других физических процессов увеличивается при возможности раз- [c.296]

    К общим для трех категорий процессам относятся также физические — нагрев, охлаждение, массообмен, физическая адсорбция, механическая стабильность, электрическая проводимость, испарение растворителя и другие  [c.42]

    Вторая категория технохимических расчетов связана с химическими процессами, протекаюши.ми в реакционных аппаратах. При этом в реакторах одновременно с химическими протекают и физические процессы (тепло- и массообмен, диффузия и т. п.). Как показывает опыт, в расчетах такого рода одновременно возникающих химических и физических процессов теория подобия оказалась неплодотворной. [c.226]

    Большинство исследователей пользуется в своих работах методом моделирования физических процессов, основанным на теории подобия. Однако некоторыми из них основные требования теории подобия все же не выдерживаются, поэтому обобщение имеющихся литературных данных по тепло- и массообмену связано с большими трудностями, а выбор расчетных уравнений и опытных данных для практических целей должен производиться с особой тщательностью и с обязательным соблюдением всех требований теории подобия. [c.8]

    Методика технологического расчета аппаратов для массообменных, тепловых и других физико-химических и физических процессов рассматривалась в курсе Процессы и аппараты Л. 6, 7]. Методика расчета реакционных аппаратов и машин для переработки полимерных материалов и оборудования производств основного органического синтеза и синтетического каучука приводится в соответствующей литературе [Л. 11, 12]. [c.112]

    Таким образом, определенные с помощью выражений (4) и (5), константы Ki не являются истинными константами скорости осаждения карбидов, так как они отражают не только химическую кинетику процесса, но и физические процессы — теплообмен и массообмен. Истинная константа скорости осаждения карбидов определяется следующим образом [c.27]

    Кинетика физической абсорбции изучена относительно хорошо. Во многих случаях, особенно при больших концентрациях извлекаемого компонента, скорость абсорбции лимитируется скоростью диффузии в жидкой фазе. При тонкой очистке, т. е. когда концентрация примеси мала, независимо от механизма абсорбции скорость ее лимитируется диффузией примеси в газовой фазе. В любом случае массообменная аппаратура процессов физической абсорбции, так же как и процессов хемосорбции, в которых скорость химической реакции велика, относительно легко поддается интенсификации. На выходе газа и жидкости из абсорберов и десорберов степень приближения к равновесию, как правило, достигает 70—80%. [c.31]

    В целом, говоря о влиянии различных факторов на скорость процесса химического превращения вещества, можно отметить следующее. Это влияние будет зависеть от фазового состояния реагирующих веществ и наличия между ними поверхности раздела фаз. Чем однороднее фазовый состав реагирующих веществ, тем меньшее число факторов будет оказывать влияние на скорость процесса. В гомогенных системах такими факторами будут давление, температура и состав реакционной смеси. В гетерогенных системах это влияние сложнее. На скорость процесса большое влияние будут оказывать также физические процессы переноса вещества и тепла (тепло- и массообмен в системе). Влияние будет тем значительнее, чем выше скорость собственно химической реакции. Безусловно, в этом случае следует учитывать и гидродинамический режим в системе, так как явления переноса движения, тепла и массы (гидродинамика, тепло- и массообмен) тесно связаны между собою. [c.17]

    Необходимым условием работы массообменного аппарата является создание в нем развитой межфазной поверхности, турбулизация потоков взаимодействующих фаз. Из всех физических процессов химической технологии массообменные процессы имеют наиболее разнообразное и сложное аппаратурное оформление. Все его многообразие связано, прежде всего, с состоянием межфазной поверхности, а именно аппараты с геометрически фиксированной поверхностью взаимодействующих фаз аппараты с гидродинамически подвижной, свободной поверхностью. На конструктивный тип аппарата оказывает влияние физическое состояние дисперсионной среды, агрегатное состояние и структура дисперсной фазы. [c.48]

    Задача (7.18) описывает два принципиально различных физических процесса — конвективный перенос вещества, с одной стороны, и гидравлическую дисперсию и массообмен в процессе движения [c.381]


    Поверхность контакта фаз, зависящая от гидродинамики процесса, относится к управляемым переменным (например, расход газа и жидкости). Эти параметры в процессе эксплуатации могут изменяться в достаточно широких пределах, но их значения не должны выходить за пределы допустимых. По суш,е-ству, спроектировать массообменный процесс — это так организовать поверхность контакта фаз и управлять ею, чтобы обеспечить заданную степень извлечения целевых компонентов при изменяющихся условиях эксплуатации. Однако необходимо заметить, что пока не существует удовлетворительных ни физических, ни математических моделей, позволяющих надежно определять вклад конструктивных и гидродинамических факторов в организацию массообменной поверхности. И поэтому всякий раз приходится прибегать к сугубо эмпирическим методам. [c.56]

    Массообмен сопровождает многие физические и химические процессы, которые целесообразно проводить в псевдоожиженном слое. Обычно стадия массо-переноса не лимитирует скорость указанных процессов, поэтому задача данной главы, в известной мере, ограничена. Однако изложенные здесь сведения могут оказаться полезными читателю в следующих целях  [c.376]

    Осуществление термотехнологических процессов в рабочих камерах печей является печным способом получения целевых продуктов за счет превращения исходных материалов при тепловом воздействии на них. К ним относятся следующие виды целенаправленных процессов физические, химические, биохимические, микробиологические, коллоидные и массообменные. [c.16]

    Для сравнительно простых систем, таких, как гидравлические или тепловые с однофазным потоком, принцип подобия и физическое моделирование оправдывают себя, оперируя ограниченным числом критериев. Для сложных систем и процессов, описываемых сложной системой уравнений с большим набором критериев подобия, которые становятся, одновременно несовместимыми, использование принципов физического моделирования наталкивается на трудности принципиального характера. Они заключаются в том, что не существует уравнений движения двухфазных потоков общего вида, отсутствует возможность задать граничные условия на нестационарной поверхности раздела фаз. Тем более не представляется возможным написать уравнения общего вида для двухфазной системы, осложненные массообменом. [c.131]

    Математическое описание является отражением физической сущности протекающего процесса со свойственными ему особенностями и ограничениями. Эти особенности и ограничения должны учитываться как при формулировании задачи, так и при выборе метода и в процессе решения. Следствием этого является часто возникающая трудность непосредственного использования классических методов численного анализа. Неправильный учет этих особенностей и ограничений, с одной стороны, может привести к абсурдным, физически нереализуемым результатам, а с другой,— к значительному усложнению программы и увеличению непроизводительных расходов машинного времени. Например, при расчете массообменных аппаратов концентрации могут изменяться в пределах от О до 1. В равной степени получение в результате расчетов как отрицательной концентрации, так и концентрации больше единицы может свидетельствовать как о несовершенстве [c.33]

    При написании книги автор использовал в основном американские источники труды конференций по подготовке газа, издаваемые ежегодно университетом штата Оклахома, журналы, книги, отчеты. Изложение материала логично и последовательно. В гл. 1 представлена обобщенная схема переработки газов с разбивкой ее на отдельные модули, что удобно для проектирования и анализа процессов. Главы 2—5 посвящены анализу поведения углеводородных систем. В гл. 6 рассматриваются спецификации на продукцию процессов переработки. Глава 7 посвящена проектированию и составлению спецификаций на аппаратуру и оборудование. В гл. S—11 излагаются физические основы процессов переработки тепло- и массообмен. [c.5]

    Особенности процесса определяют конструкцию реактора и его размеры. В одних случаях определяющими являются физические стадии процесса (тепло- и массообмен), в других — кинетика химической стадии. [c.270]

    В нашем представлении общая теория печей может быть разработана только на основе определенной схематизации тепловой работы печей, учитывающей только общие черты этой работы, т. е. в известной степени на основе абстрактного представления о работе печей. Практическое значение. общей теории печей заключается в формулировании положений для конструирования печей как существующих в настоящее время, так и могущих возникнуть в будущем в связи с появлением новых технологических процессов. Теоретическими основами общей теории печей является физика (главным образом техническая) и физическая химия. Если будет уместно физику и физическую химию сравнить с корневой системой дерева, то общая теория печей есть ствол, ветви которого можно рассматривать как частные функциональные теории печей конкретного технологического назначения. Подобно термодинамике, механике жидкостей и газов и учению о тепло- и массообмене, общая теория печей есть наука феноменологическая, рассматривающая явления как таковые, не касаясь механизма тех или иных процессов, сущность которых по-настоящему раскрывается при рассмотрении явлений на уровне микромира. Поэтому представления из области микромира привлекаются только в тех случаях, когда иначе нельзя объяснить сущность того или иного процесса. [c.11]

    В химическом производстве вещества перерабатываются с целью изменения физического состояния, содержания энергии и состава. Превращение одних веществ в другие происходит в реакторах. На степень превращения влияют многочисленные факторы кинетика реакции, гидродинамическая обстановка, тепло-массообмен и т.д. Подавляющее большинство процессов химической технологии (механические, тепло-массообменные) протекают на физическом уровне, т.е. не связаны непосредственно с химическими превращениями веществ, да и элементарные акты химических реакций также имеют физическую природу [1]. [c.5]

    Эффективным методом интенсификации газожидкостных процессов является, в особенности для многостадийных процессов, при наличии побочных реакций или значительного ингибирующего действия продуктов реакции совместное проведение нескольких консекутивных реакций в едином реакционном объеме или осуществление химической реакции совместно с физическим процессом разделения образующейся реакционной массы Если первый из этих методов известен давно и достаточно широко используется в химической технологии, то реакционно-массообменные процессы и аппараты для их осуществления появились в промышленности не более 20—25 лет тому назад и применяются в основном для периодических вариантов технологических процессов. Последнее обусловлено, по-видимому, тем, что не сформулированЬг основныё принципйИ %е разработаны [c.17]

    Впечатляющие успехи последнего десятилетия, достигнутые в компьютерных технологиях, привели к переосмыслению роли визуализации в процессе эксперимента, в результате чего ее развитие вышло на качественно новый этап. По этой причине отчетливо прослеживаются тенденции, в соответствии с которыми визуализация не ограничивается собственно экспериментом, а завершается сбором и последующей обработкой первичной информации с помощью компьютера (англ. термин Image Pro essing ), позволяющей реконструировать преимущественно мгновенные реализации полей скорости и завихренности исследуемого объекта. Использование такого подхода совместно с современной компьютерной графикой стали называть визуализацией потока второго поколения [98 ], которая постепенно становится практикой сегодняшнего дня. Поэтому визуализация как таковая — это не только инструмент изучения объекта, но еще и способ создания образа исследуемого явления, который формируется с помощью всей информации, в том числе и невидимой (тепло- и массообмен и др.). Таким образом, основное достоинство компьютерной визуализации состоит в том, что многие физические процессы можно сделать видимыми, наглядными и удобными для изучения. Процедура проведения такой визуализации охватывает следующие элементы  [c.33]

    Жидкости и газы, насыщающие нефтегазоконденсатные пласты, представляют собой смеси углеводородных, а также неуглеводородных компонентов, некоторые из которых способны растворяться в углеводородных смесях. При определенных режимах разработки нефтяных и нефтегазоконденсатных месторождений в пласте возникает многофазное течение сложной многокомпонентной смеси, при котором между движущимися с различными скоростями фазами осуществляется интенсивный массообмен. Переход отдельных компонентов из одной фазы в другую влечет за собой изменение составов и физических свойств фильтрующихся фаз. Такие процессы происходят, например, при движении газированной нефти и вытеснении ее водой или газом, при разработке месторождений сложного комйонентногс ( ава (в частности, с большим содержанием неуглеводородных компонентов), при вытеснении нефти оторочками активной примеси (полимерными, щелочными и мицеллярными растворами различными жидкими и газообразными растворителями). Основой для расчета таких процессов служит теория многофазной многокомпонентной фильтрации, интенсивно развивающаяся в последние годы. Вместе с тем заметим, что область ее применения шире, чем здесь указано, и эта теория имеет важное общенаучное значение. [c.252]

    Рассмотрим ограничения, накладываемые на выполнение формулы аддитивности, более подробно. Выполнение условия равновесия (4.5) на границе раздела фаз у большинства исследователей не вызьшает сомнения, поскольку процессы, протекающие на поверхности раздела фаз при физической абсорбции и экстракции — сольватация, десольватация, изомеризация и т. п., имеют скорости, значительно превышающие скорость массообмена. Однако в ряде работ по массообмену в аппаратах с плоской границей раздела фаз и с механическим перемешиванием в каждой из фаз авторы обнаружили отклонение от формулы аддитивности, обусловленное, как они предположили, поверхностным сопротивлением. В работе [221] приведен критический обзор основньгх исследований, в которых, по мнению авторов, было обнаружено поверхностное сопротивление в системах жидкость - жидкость. В этих работах частные коэффициенты массоотдачи определялись косвенным методом с погрешностью, большей чем отклонение от формулы аддитивности. Кроме того, в некоторых работах обнаружены методические ошибки. Для проверки формулы аддитивности требуются более точные методы определения частных коэффициентов массоотдачи (см. раздел 4.4). Поверхностное сопротивление массотеплообмена мало изучено. Одним из возможных механизмов является экранирование поверхности поверхностно-активными веществами (ПАВ) [222-224]. К обсуждению роли поверхностного сопротивления мы будем возвращаться в последующем изложении. [c.171]

    Технологическая (или рабочая) машина представляет собой комплекс механизмов, предназначенных для выполнения технологического процесса в соответствии с заданной программой. В ходе техно-логиче кого процесса под воздействием рабочих органов машины изменяются качественные показатели предмета труда (физические свойства, форма, положение) при этом затрачивается полезная работа В машинах химических производств технологический процесс обычно носит сложный характер на предмет труда помимо M xaim ческого воздействия может накладываться какой-либо (или совокупность) типовой процесс химической технологии — химическое превращение, межфазный массообмен, нагрев, изменение агрегапного (фазового) состояния вещества и др. Например, в аммо-низаторах-грануляторах происходит не только процесс гранулирования окатыванием, т. е. получение сферических гранул из мелкодисперсного материала перемещением его частиц во вращающемся барабане, но и химическая реакция — нейтрализация жидким аммиаком фосфорной кислоты, содержащейся в пульпе, которая подается в гранулятор, а также сушка материала (тепломассообменный процесс). [c.7]

    Автору, очевидно, остались неизвестными многочисленные работы по гидродинамике и массообменной способности аппаратов с турбулентным трехфазным псевдоожиженным слоем, опубликованные на протяжении последних 6—8 лет советскими и зар жными исследователями. Это, естественно, значительно сузило объем информации по рассматриваемому вопросу, изложенной в данной главе. С целью восполнения этого пробела мы приводим список наиболее важных опубликованных работ [8-22]. В последних содержится достаточно обширная информация по ряду аспектов рассматриваемого процесса режимы трехфазного псевдоожижения начало полного ожижения и его зависимость от скоростей потоков ожижающих агентов, их физических свойств, а также от размеров и эффективной плотности элементов насадки динамическая высота слоя и газосодержание перепад давления в слое пределы существования трехфазного псевдоожиженного слоя интенсивность циркуляции элементов насадки в слое величина межфазной поверхности продольное перемешивание массообменная способность аппаратов с трехфазным псевдоожиженным слоем в процессах физн- -ческой абсорбции, хемосорбции и ректификации бинарных Жидких смесей. [c.675]

    В печах при получении целевых продуктов из заданных исходных материалов осуществляются процессы следующих видов физические, химические, биохимуческие, микробиологические, коллоидные, массообменные, энергетические (теплообменные, теплогенерационные), гидромеханические, механические и т. д. Эти процессы протекают б рабочей камере печей параллельно, последовательно или накладываясь один на другой и имеют различные количественные и качественные характеристики в зависимости от координат рассматриваемой точки в рабочей камере печи, а также от времени с начала процесса. [c.15]

    В тепло-массообменных процессах воздействия должны быть связаны с ускорением переноса энергии и массы. Из физической сущности тепло-массопереноса следует, что интенсификация может идти по пути создания больших градиентов, влияния на конвективный перенос, непосредственно на коэффициентны переноса, а также по пути управления распределением источников. Когда создание больших градиентов лимитировано свойствами перерабатываемых веществ или технологическими условиями, перспективно физическое воздействие через конвективный тепло-массоперенос. Существенный вклад может дать управляемое пространственно-временное распределение внутрен-. них источников тепла, генерируемых различными полями или частицами. Наконец, возможно влияние непосредственно на коэффициенты переноса, например утоньчение пограничных слоев под воздействием колебаний и т. п. [c.18]

    Наличие уравнений, описывающих процесс, вне зависимости от возможности их рещения позволяет получать критерии подобия, которые имеют определенный физический смысл. Почленным делением отдельных слагаемых уравнений системы (2.3.3) могут быть получены безразмерные группы Fo = ax/R и Fom = = amx/R — критерии гомохронности полей температуры и потенциала переноса влаги (тепловой и массообменный критерии Фурье). Отношение этих критериев дает критерий Lu == йт/а, представляющий собой меру относительной инерционности полей потенциала переноса влаги и температуры в нестационарном процессе сушки (критерий Лыкова). Критерий Ко = Гс Дц/(с А0) есть мера отношения количеств теплоты, расходуемых на испарение влаги и на нагрев влажного материала (критерий Косо-вича). Специфическим для внутреннего тепло- и массопереноса является критерий Поснова Рп = 6Д0/Ам, который представляет собой меру отношения термоградиентного переноса влаги к переносу за счет градиента влагосодержания. Независимым параметром процесса является критерий фазового превращения е.  [c.108]

    Получение адекватной математической модели химических про-цессоь — сложная задача, которая требует лабораторных исследований. Однако эти исследования должны быть направлены не на воспроизиедение промышленных условий, как это делается при физическом моделировании, а на определение уравнений, описывающих процесс математически. Обычно идут по пути раздельного изучения кинетики химического иреврашения и сопровождающих процессов (гидродинамика, тепло- и массообмен). Синтез отдельных стадий осуществляют в полном математическом описании процесса. [c.324]


Смотреть страницы где упоминается термин Массообмен в физических процессах: [c.18]    [c.255]    [c.288]    [c.170]    [c.4]    [c.171]    [c.215]   
Промышленное псевдоожижение (1976) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Массообмен



© 2025 chem21.info Реклама на сайте