Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ПАВ, влияние с химической реакцией

    Часто представляется удобным выражать влияние химической реакции посредством коэффициента ускорения абсорбции Е, равного отношению количества газа Q, абсорбированного реагирующей с ним жидкостью за данное время, к его количеству, которое абсорбировалось бы за это время в отсутствие реакции, т. е, к 2 (А Л ) [c.45]

    Проведение опытов в этих условиях преследует обычно цель моделирования на лабораторных установках процесса абсорбции в промышленной аппаратуре, например в насадочных колоннах. Как показано в главе V, количественные оценки влияния химической реакции на скорость абсорбции обычно мало отличаются друг от друга независимо от того, сделаны ли они на основе пленочной модели или моделей поверхностного обновления Хигби или Данквертса. В большинстве случаев для данного значения коэффициента массоотдачи при физической абсорбции, k , по всем моделям получаются близкие предсказания в отношении этого влияния. Поэтому можно ожидать, что если лабораторная модель промышленного абсорбционного аппарата, предназначенная для изучения влияния реакции на скорость абсорбции, сконструирована с соблюдением существенного условия одинаковости значений в натуре и в модели, то, в соответствии с изложенным в главе V, данная реакция будет приводить к увеличению скорости абсорбции в обоих аппаратах в одинаковой степени (при одном и том же значении А, или парциального давления растворяемого газа у поверхности жидкости). [c.175]


    В книге, посвященной преимущественно рассмотрению химических реакций между газами и жидкостями, нецелесообразно подробно анализировать вопросы, касающиеся гидродинамики перемешиваемых жидкостей и всех предложенных упрощенных моделей процесса физической абсорбции. Поэтому далее, после обзора некоторых моделей, основное внимание будет уделено использованию наиболее простых из них для предсказания влияния химических реакций на скорость абсорбции. [c.100]

    Отсюда можно сделать вывод, что в данном случае влияние химической реакции на массоперенос может быть выражено следующим образом  [c.253]

    Автор не стремился к чрезмерно глубокому анализу проблем гидродинамики и реакционной кинетики, хотя и те и другие рассматриваются в книге в той мере, в какой это необходимо применительно к интересующему вопросу. Основное же внимание уделено центральной теме — влиянию химических реакций на скорость абсорбции газов жидкостями и на размеры промышленных и лабораторных аппаратов для проведения абсорбционных процессов. [c.9]

    V-2. Влияние химических реакций [c.106]

    Во-вторых, модель можно использовать для предсказания не скорости физической абсорбции, а влияния химической реакции на скорость абсорбции. В этой книге в основном рассматривается именно это второе приложение моделей, в качестве которых будут взяты [c.106]

    Во многих случаях различия в данных о влиянии химической реакции, полученных на основании всех трех моделей, значительно меньше неопределенности в отношении действительных значений физических параметров, необходимых для расчета. Таким образом, выбор модели часто связан лишь с теми или иными удобствами использования каждой из них. В частности, для одной модели может быть получено аналитическое решение, для другой — лишь численное. [c.109]

    У-2-1. Пример реакции первого порядка. Рассмотрим необратимую реакцию первого порядка для оценки влияния химической реакции, пользуясь всеми тремя моделями. В этом случае локальная скорость реакции в единице объема составляет [c.110]

Рис. VI- . Влияние химической реакции на профиль концентрации в диффузионной пленке. Рис. VI- . <a href="/info/324790">Влияние химической реакции</a> на <a href="/info/26135">профиль концентрации</a> в диффузионной пленке.
    Воздействие химической реакции на равновесное распределение переходящего компонента между фазами учитывается при вычислении общей движущей силы массопередачи. Влиянием потока химической реакции на поток массы, как правило, пренебрегают. Таким образом, при определении коэффициентов массопередачи учет влияния химической реакции сводится к учету изменения потока массы из-за непосредственного изменения поля концентрации. Однако если скорость процесса массопередачи лимитируется сопротивлением транспортной фазы, то воздействие химической реакции на распределение концентрации переходящего компонента в реакционной фазе не может привести к изменению скорости массопередачи. Поэтому химическая реакция оказывает воздействие на скорость массопередачи только в том случае, когда скорость массопередачи лимитируется сопротивлением реакционной фазы. [c.227]


    IX-1-3. Сопротивление массопередаче в жидкой фазе и межфазная поверхность. Для оценки влияния химической реакции на скорость абсорбции газа необходимо знать величины и ав отдельности. Величина объемного коэффициента kiO. может быть легко измерена путем абсорбции с учетом сопротивления в газовой фазе или при полном устранении сопротивления со стороны газа в таких измерениях. Если независимо от этого определить а, то по величинам к а [c.207]

    Исследование влияния химической реакции на скорость абсорбции при наличии термических эффектов. [c.286]

    ВЛИЯНИЕ ХИМИЧЕСКОЙ РЕАКЦИИ НА СКОРОСТЬ ПРОЦЕССОВ ПЕРЕНОСА [c.226]

    Как это ни парадоксально, но при расчете химических реакторов жидкость — жидкость или жидкость — газ гораздо чаще приходится сталкиваться с обычной физической массопередачей, чем с массопередачей, осложненной химической реакцией. Этот факт является следствием физической природы и механизма влияния химической реакции на скорость процессов переноса. [c.226]

    Этот факт оказывает определяющее влияние при расчете скорости массопередачи и коэффициентов массопередачи к поверхности катализатора в двухфазных и многофазных гетерогенно-каталитических реакторах. В реакторах этого типа реакция протекает на поверхности или в объеме зерна катализатора. Поэтому при вычислении коэффициентов массопередачи к поверхности катализатора влияние химической реакции обычно не учитывается. [c.227]

    Сопоставление формул (12.9) и (12.13) показывает, что влияние химической реакции на скорость массопередачи можно выразить при помощи фактора ускорения р. В случае молекулярной диффузии ускорение, вызванное необратимой быстропротекающей реакцией, определяется соотношением  [c.231]

    Скорость массопередачи увеличивается благодаря химической реакции на рис. У-З, например, градиенты концентраций компонента А на границе раздела фаз возрастают в направлении 1—2—3 так же, как увеличивается скорость реакции. Многие исследования в этом направлении показывают, что отношение скорости массопередачи в системах, где протекает химическая реакция, к скорости физической массопередачи не зависит от механизма собственно массопередачи. Это дает возможность почти количественно исследовать влияние химической реакции на массопередачу, основываясь на простейшей, но нереальной модели стационарной диффузии через ламинарную пленку. [c.162]

    Влияние времени контакта. На рис. ХП-9 и ХП-10 графически представлены характеристики реакционной способности частицы постоянного размера в тех случаях, когда стадиями, определяющими скорость процесса, являются химическая реакция, диффузия через газовую пленку и диффузия через слой золы . Результаты кинетических опытов для различных периодов процесса, сопоставленные с приведенными теоретическими кривыми, позволяют быстро найти, какая стадия является лимитирующей для данного процесса. К сожалению, разница между тормозящим влиянием химической реакции и диффузии через слой золы мала. Поэтому при наличии разброса экспериментальных данных указанные эффекты относительно трудно разделить. [c.342]

    Влияние химической реакции на процесс массообмена между твердыми частицами и жидкостью может быть учтено введением в критериальные уравнения массообмена сомножителя ф с показателем степени, равным единице. Этот параметр представляет собой (40] отношение коэффициентов массоотдачи при протекании химической реакции и без нее. [c.35]

    Протекание химических процессов в реальных условиях часто осложнено наличием таких факторов, как турбулентный характер течения реагирующих потоков и пространственная неоднородность состава реагирующей смеси и полей скоростей и температур. В настоящее время известно, что знание только средних значений таких флюктуирующих величин, как температура и концентрации реагирующих компонент, недостаточно дпя полного описания сложных процессов химического превращения в условиях неизотермичности и турбулентности даже в тех случаях, когда влиянием химической реакции на гидродинамические характеристики системы можно пренебречь [147]. Необходимость учета флюктуаций температуры и концентраций реагентов и их взаимных корреляций обусловлена тем, что средняя скорость элементарного акта химического превращения в условиях неизотермического турбулентного смешения реагирующих компонент не определяется в виде закона Аррениуса при средних значениях этих величин. Кроме того, наличие флюктуаций приводит к существенному изменению коэффициентов переноса, значения которых определяются в этих случаях не только свойствами реагирующих газов, но и свойствами самого течения [86, 97, 127]. [c.178]


    Рассмотрим случай одной модельной эндотермической реакции, протекающей в объеме без протока газа исследование этой системы позволяет изучить влияние химической реакции на функцию плотности вероятности пульсаций температуры и концентраций. [c.184]

    Метод поляризационных кривых оказывается достаточно информативным при изучении электрохимических процессов, осложненных химическими превращениями вблизи электрода или на его поверхности. В этом случае параметры поляризационных кривых существенно отличаются от параметров, характерных для обратимых или необратимых электрохимических процессов, не включающих химических стадий. Влияние химических реакций на поляризационные характеристики зависит от их места в общей последовательности реакционных стадий, порядка реакции, величины константы скорости и может быть многоплановым оно сказывается на количестве, форме и высоте волн, числе участвующих в реакции электронов, на диффузионном, кинетическом или каталитическом характере волн, на величинах потенциалов полуволны и их зависимости от условий эксперимента. Сопоставляя экспериментальные поляризационные характеристики с теоретически рассчитанными для различных механизмов процесса, можно сделать важные выводы относительно пути реакции и ее механизма. [c.195]

    Фарадеевский импеданс не всегда зависит от диффузии. Исследования влияния химических реакций, опережающих или отстающих от реакции переноса, и вытекающей отсюда зависимости фарадеевского импеданса от [c.155]

    Данквертс и др. , абсорбируя двуокись углерода щелочными растворами в насадочной колонне диаметром 10 см, установили, что результаты, полученные ими, согласуются с данными моделей Хигби и Данквертса. Результаты Ричардса и др. по абсорбции СОа буферными растворами в присутствии катализаторов в колонне того же диаметра согласуются с моделью Данквертса. Данные Таварес да Силва и Данквертса по абсорбции сероводорода растворами аминов в такой же колонне более согласуются с моделью обновления, чем с пленочной моделью (в этом случае между предсказаниями обеих моделей имеются существенные различия). Данквертс и Гиллхэм показали, что модель поверхностного обновления Хигби могла быть успешно использована для определения скорости абсорбции двуокиси углерода раствором NaOH в колонне диаметром 50 см. Все это говорит в пользу надежности применения моделей поверхностного обновления и свидетельствует о том, что методы, рассмотренные в этой главе,могут успешно применяться для установления влияния химической реакции на скорость абсорбции. Следует, однако, подчеркнуть, что в большинстве случаев данные для пленочной модели были бы почти такими же, что и для моделей обновления поверхности. [c.108]

    При малых значениях параметра (0,5 и менее) к 1, т.е. влияние химической реакции незначительно, и процесс может приближенно рассматриваться как физическая абсорбция. При значениях а >2 и 00 величина к не зависит от М и равна а . [c.360]

    Для расчета реакторов целесообразно подразделить реакции в жидкостях на две группы 1) очень быстрые реакции, скорость которых на поряд.чи превышает скорости процессов переноса, имеющих место в жидкостных системах 2) реакции, протекающие со скоростями, сравнимыми со скоростями указанных процессов. К первой группе относятся реакции между неорганическими молекулами, диссоциированными на ионы, ко второй — практически все реакции органических соединений. Скорость реакций первой группы не может быть лил1итирующей для всего реакторного процесса. Казалось бы, вид кинетического уравнения и значения самой скорости несущественны для расчета реактора. Действительно, это справедливо для достаточно грубых расчетов, не учитывающих влияния химической реакции на формальные значения коэффициентов массопередачи. Однако прп более точных расчетах, где указанные эффекты учиты- [c.27]

    На основе этой модели выведены уравнения для реактора периодического действия, противоточной колонны и прямоточного непрерывного реактора. Теоретические данные подтверждены экспериментально при исследовании массопередачи с химической реакцией в системе уксусный ангидрид — бензол — вода. Коэффициенты массопередачи были оценены предварительно в системе бензол — вода — уксусная кислота. Затем раствор уксусного ангидрида концентрации 0,5—1 М контактировался с водой в пульсирующей колонне и учитывалось влияние химической реакции. В качестве измеряемого показателя выбрали концентрацию уксусного ангидрида в выводимом бензольном потоке. Расхождение между экспериментальными и теоретическими данными составляло 5%. [c.361]

    В дальнейшем было показано, что вывод об ускоряющем влиянии химических реакций следует распространить также и на все обратимые реакции, отклоненные от положения равновесия процессами переноса [7]. Этот вывод оказался справедливым независимо от фазы, в которой протекают такие реакции и числа переносимых компонентов [154]. Заметим, что в указанных работах [7, 154] анализ проблемы проведен с использованием принципов термодинамики. необратимых процессов, т. е. безотносительно к конкретному механизму химического взаимодействия. 1 [c.382]

    При рассмотрении процесса химической абсорбции в режиме мгновенной реакции не всегда можно пренебрегать сопротивлением массопереносу в газовой фазе, так как на кЬэффициент массоотдачи в жидкой фазе оказывает сильное влияние химическая реакция. [c.101]

    Вопрос о коэффициенте межфазного массопереноса в случае катализсггора в виде утопленной насадки изучен недостаточно. Можно предполагать, что при достаточно малой толщине пленки жидкости на поверхности катализатора будет проявляться влияние химической реакции на коэффициент массопередачи, аналогично тому, как это показано в гл. 13 для двухфазного реактора. Однако поскольку доля такой поверхности в общей поверхности [c.189]

    Существуют три параллельных механизма воздействия химической реакции на скорость массопередачи. Во-первых, наличие в системе химической реакции, как правило, оказывает влияние на установление равновесного распределения переходящего компонента между фазами и тем самым иа движущую силу процесса массопередачи независимо от способа ее выражения. Во-вторых, химическая реакция оказывает влияние на величину коэффициента массопередачи независимо от способа его выражения, т. е. независимо от способа выражения движущей силы процесса. Взаимное влияние химической реакции и процессов переноса рассматривается термодинамикой необратимых процессов. Общий подход к вопросу разработан Де Гроотом и Мазуром [1], которые рассмотрели процесс теплопередачи в системе с химической реакцией. Вопросы взаимного влияния массопередачи и химической реакции с позиций термодинамики необратимых процессов рассматривались Оландером [2], а также Фридлендером и Келлером [3]. Хотя количественные результаты были получены 13] лишь для области очень малых отклонений от химического равновесия, однако качественно было показано, что наличие объемной реакции приводит к увеличению потока массы. [c.226]

    Общие закономерности влияния химической реакции па скорость массопередачи удобно проследить в простейшем случае молекулярной диффузии в полубесконечпый слой, осложненной химической [c.228]

    Как видно из табл. VII.1, расхождения между экспериментальными и расчетными данными не столь велики и кроме общих неточностей в определении коэффициентов, видимо, связаны с недооценкой влияния химической реакции на коэффициент межфазного массоцбмена р. [c.310]

    Математическая модель хемосорбции двуокиси углерода поташным раствором, описывающая структуру потоков жидкости и газа в насадке, массообмен между жидкой и газовой фагами, влияние химической реакции иа скорость массообмена, была составлена на основе приици-аа деления аппарата на кинетические зоны [Ъ] в зависшости от взаимодействия газовой и жидкой фаз по высоте колонны с изменение концентрации раствора. [c.162]

    Показатель степени при критерии Шмидта авторы приняли на основе работы Марангосиса и Джонсона [45]. Остальные показатели степени определялись авторами на основе собственных экспериментов. Параметр ф учитывает влияние химической реакции на массоотдачу и представляет собой отношение коэффициентов массоотдачи с участием химической реакции и без ее участия. [c.320]

    Единственный литер атурный обзор по кинетике экстракции неорганических веществ был выполнен в 1964 г. Золотовым, Алиыа-рпным и Бодня [11. С тех пор интерес к вопросам кинетики экстракционных процессов значительно возрос, и в настоящее время накоплен обширный материал, который в основном разрознен по различным журнальным статьям и зачастую противоречив. Обобщение этого материала и его систематизация может иметь большое значение для выявления основных закономерностей влияния химических реакций на скорость экстракции веществ. Эта проблема представляет теоретический интерес, так как только исследования в области кинетики дают возхможность изучить тонкий механизм процессов экстракции. В то же время решение этой проблемы имеет важное практическое значение для расчетов экстракционной аппаратуры и особенно в связи с созданием аппаратов с малым временем контакта фаз. [c.379]


Смотреть страницы где упоминается термин ПАВ, влияние с химической реакцией: [c.31]    [c.102]    [c.107]    [c.190]    [c.365]    [c.204]    [c.144]    [c.448]    [c.166]   
Последние достижения в области жидкостной экстракции (1974) -- [ c.12 , c.385 ]




ПОИСК







© 2025 chem21.info Реклама на сайте